GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Dark Contributions to $h\to \mu^+\mu^-$ in the Presence of a $\mu$-Flavored Vector-Like Lepton |
Bibhabasu De* |
Department of Physics, ICFAI University Tripura, Kamalghat-799210, India |
|
Cite this article: |
Bibhabasu De 2023 Chin. Phys. Lett. 40 049501 |
|
|
Abstract A simple extension of the standard model (SM) with a $\mu$-flavored vector-like lepton (VLL) doublet and a real singlet scalar can have an interesting implication to the $h \to\mu^+\mu^-$ decay while offering the simplest possible explanation for the dark matter (DM) phenomenology. Assuming the real singlet scalar to be a viable DM candidate, it has been shown that the muon Yukawa coupling can have a negative contribution at the one-loop order if the $2^{\rm nd}$ generation SM leptons are allowed to couple with the VLL doublet. The stringent direct detection bounds corresponding to a real singlet scalar DM can easily be relaxed if the SM quark sector was augmented with a dimension-6 operator at some new physics (NP) scale $\varLambda_{\scriptscriptstyle{\rm NP}}$. Thus, this model presents a significant phenomenological study where the muon Yukawa coupling can be corrected within a real singlet scalar DM framework. The considered parameter space can be tested/constrained through the high luminosity run of the LHC (HL-LHC) and future direct detection experiments.
|
|
Received: 30 January 2023
Published: 29 March 2023
|
|
PACS: |
95.85.Ry
|
(Neutrino, muon, pion, and other elementary particles; cosmic rays)
|
|
95.30.Cq
|
(Elementary particle processes)
|
|
14.80.Ec
|
(Other neutral Higgs bosons)
|
|
12.60.-i
|
(Models beyond the standard model)
|
|
|
|
|
[1] | Aad G, Abbott B, Abdallah J et al. (ATLAS collaboration) 2012 Phys. Lett. B 716 1 |
[2] | Chatrchyan S, Khachatryan V, Sirunyan A M et al. (CMS collaboration) 2012 Phys. Lett. B 716 30 |
[3] | Aad G et al. (ATLAS collaboration) 2019 arXiv:1909.02845 [hep-ex] |
[4] | Sirunyan A M, Tumasyan A, Adam W et al. (CMS collaboration) 2021 J. High Energy Phys. 2021(01) 148 |
[5] | Borriello A and Salucci P 2001 Mon. Not. Roy. Astron. Soc. 323 285 |
[6] | Hoekstra H, Yee H, and Gladders M 2002 New Astron. Rev. 46 767 |
[7] | Bennett C L, Larson D, Weiland J L, Jarosik N, Hinshaw G, Odegard N, Smith K M, Hill R S, Gold B, Halpern M, Komatsu E, Nolta M R, Page L, Spergel D N, Wollack E, Dunkley J, Kogut A, Limon M, Meyer S S, Tucker G S, and Wright E L 2013 Astrophys. J. Suppl. Ser. 208 20 |
[8] | Steigman G and Turner M S 1985 Nucl. Phys. B 253 375 |
[9] | McDonald J 1994 Phys. Rev. D 50 3637 |
[10] | Cline J M, Kainulainen K, Scott P, and Weniger C 2013 Phys. Rev. D 88 055025 |
[11] | Athron P, Cornell J M, Kahlhoefer F, Mckay J, Scott P, and Wild S 2018 Eur. Phys. J. C 78 830 |
[12] | Aalbers J et al. (LZ collaboration) 2022 arXiv:2207.03764 [hep-ex] |
[13] | Das D, De B, and Mitra S 2021 Phys. Lett. B 815 136159 |
[14] | Bishara F, Brod J, Uttarayat P, and Zupan J 2016 J. High Energy Phys. 2016(01) 010 |
[15] | Adhikari R, Bhat I A, Borah D, Ma E, and Nanda D 2022 Phys. Rev. D 105 035006 |
[16] | Chiang C W, Obuchi R, and Yagyu K 2022 J. High Energy Phys. 2022(05) 070 |
[17] | Kowalska K and Sessolo E M 2021 Phys. Rev. D 103 115032 |
[18] | Hewett J L and Rizzo T G 1989 Phys. Rep. 183 193 |
[19] | Langacker P 1981 Phys. Rep. 72 185 |
[20] | Antoniadis I 1990 Phys. Lett. B 246 377 |
[21] | Minkowski P 1977 Phys. Lett. B 67 421 |
[22] | Foot R, Lew H, He X G, and Joshi G C 1989 Z. Phys. C 44 441 |
[23] | Crivellin A, Kirk F, Manzari C A, and Montull M 2020 J. High Energy Phys. 2020(12) 166 |
[24] | Kondratyev D 2022 Ph.D. Dessertation (Purdue University) |
[25] | Sirunyan A M, Tumasyan A, Adam W et al. (CMS collaboration) 2019 Phys. Rev. D 100 052003 |
[26] | Bißmann S, Hiller G, Hormigos-Feliu C, and Litim D F 2021 Eur. Phys. J. C 81 101 |
[27] | Bélanger G, Boudjema F, Pukhov A, and Semenov A 2009 Comput. Phys. Commun. 180 747 |
[28] | Jarosik N, Bennett C L, Dunkley J, Gold B, Greason M R, Halpern M, Hill R S, Hinshaw G, Kogut A, and Komatsu E 2011 Astrophys. J. Suppl. Ser. 192 14 |
[29] | Aghanim N et al. (Planck collaboration) 2018 arXiv:1807.06209 [astro-ph.CO] |
[30] | Aprile E et al. (XENON collaboration) 2020 arXiv:2007.08796 [physics.ins-det] |
[31] | Romão J C 2020 Advanced Quantum Field Theory (Instituto Superior Técnico) |
[32] | Allwicher L, Arnan P, Barducci D, and Nardecchia M 2021 J. High Energy Phys. 2021(10) 129 |
[33] | Abi B, Albahri T, Al Kilani S et al. (Muon g 2 collaboration) 2021 Phys. Rev. Lett. 126 141801 |
[34] | Albahri T, Anastasi A, Anisenkov A et al. (Muon g 2 collaboration) 2021 Phys. Rev. D 103 072002 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|