Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 048201    DOI: 10.1088/0256-307X/40/4/048201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A 700 W$\cdot$h$\cdot$kg$^{-1}$ Rechargeable Pouch Type Lithium Battery
Quan Li1,2, Yang Yang1,2,3, Xiqian Yu1,2,3*, and Hong Li1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Quan Li, Yang Yang, Xiqian Yu et al  2023 Chin. Phys. Lett. 40 048201
Download: PDF(4280KB)   PDF(mobile)(4490KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-energy-density rechargeable lithium batteries are being pursued by researchers because of their revolutionary potential nature. Current advanced practical lithium-ion batteries have an energy density of around 300 W$\cdot$h$\cdot$kg$^{-1}$. Continuing to increase the energy density of batteries to a higher level could lead to a major explosion development in some fields, such as electric aviation. Here, we have manufactured practical pouch-type rechargeable lithium batteries with both a gravimetric energy density of 711.3 W$\cdot$h$\cdot$kg$^{-1}$ and a volumetric energy density of 1653.65 W$\cdot$h$\cdot$L$^{-1}$. This is achieved through the use of high-performance battery materials including high-capacity lithium-rich manganese-based cathode and thin lithium metal anode with high specific energy, combined with extremely advanced process technologies such as high-loading electrode preparation and lean electrolyte injection. In this battery material system, the structural stability of cathode material in a widened charge/discharge voltage range and the deposition/dissolution behavior of interfacial modified thin lithium electrode are studied.
Received: 03 March 2023      Express Letter Published: 21 March 2023
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
  82.45.Qr (Electrodeposition and electrodissolution)  
  82.47.Wx (Electrochemical engineering)  
  81.15.Pq (Electrodeposition, electroplating)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/048201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/048201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Quan Li
Yang Yang
Xiqian Yu
and Hong Li
[1]Hiroshi K, Marcelo L, Kenneth I, and Hoi W J C 2021 United Nations, Department of Economic and Social Affairs: Economic Analysis Frontier Technology Issues: Lithium-Ion Batteries: A Pillar for a Fossil Fuel-Free Economy
[2] Li Q, Yu X Q, and Li H 2022 eTransportation 14 100201
[3]2021 U.S. Department of Energy National Blueprint for Lithium Batteries 2021–2030
[4]Edström K 2022 Battery 2030+ Inventing the Sustainable Batteries of the Future: Research Needs and Future Actions, in Roadmap paper
[5] Viswanathan V, Epstein A H, Chiang Y M, Takeuchi E, Bradley M, Langford J, and Winter M 2022 Nature 601 519
[6]2021 U.S. Department of Energy's (DOE) Argonne National Laboratory White Paper: Assessment of the R&D Needs for Electric Aviation
[7] Li W J, Xu H Y, Yang Q, Li J M, Zhang Z Y, Wang S B, Peng J Y, Zhang B, Chen X L, and Zhang Z 2020 Energy Storage Sci. Technol. 9 448
[8] Louli A J, Eldesoky A, deGooyer J, Coon M, Aiken C P, Simunovic Z, Metzger M, and Dahn J R 2022 J. Electrochem. Soc. 169 40517
[9] Usubelli C, Besli M M, Kuppan S, Jiang N N, Metzger M, Dinia A, Christensen J, and Gorlin Y 2020 J. Electrochem. Soc. 167 080514
[10] Lin D C, Liu Y Y, and Cui Y 2017 Nat. Nanotechnol. 12 194
[11] Yu L L, Tian Y X, Xiao X, Hou C, Xing Y R, Si Y H, Lu H, and Zhao Y J 2021 J. Electrochem. Soc. 168 050516
[12] Xu K 2004 Chem. Rev. 104 4303
[13] Cheng X B, Zhang R, Zhao C Z, and Zhang Q 2017 Chem. Rev. 117 10403
[14] Xu K 2014 Chem. Rev. 114 11503
[15] Kuang Y D, Chen C J, Kirsch D, and Hu L B 2019 Adv. Energy Mater. 9 1901457
[16] Niu C J, Lee H K, Chen S R, Li Q Y, Du J, Xu W, Zhang J G, Whittingham M S, Xiao J, and Liu J 2019 Nat. Energy 4 551
[17] Eldesoky A, Louli A J, Benson A, and Dahn J R 2021 J. Electrochem. Soc. 168 120508
[18] Pham M T M, Darst J J, Walker W Q, Heenan T M M, Patel D, Iacoviello F, Rack A, Olbinado M P, Hinds G, Brett D J L, Darcy E, Finegan D P, and Shearing P R 2021 Cell Rep. Phys. Sci. 2 100360
[19] Xiong R Y, Zhang Y, Wang Y M, Song L, Li M Y, Yang H, Huang Z G, Li D Q, and Zhou H M 2021 Small Methods 5 2100280
[20] Chang Z, Yang H J, Zhu X Y, He P, and Zhou H S 2022 Nat. Commun. 13 1510
[21] Chen J, Fan X L, Li Q, Yang H B, Khoshi M R, Xu Y B, Hwang S, Chen L, Ji X, Yang C Y, He H X, Wang C M, Garfunkel E, Su D, Borodin O, and Wang C S 2020 Nat. Energy 5 386
[22] Yin W, Grimaud A, Rousse G, Abakumov A M, Senyshyn A, Zhang L T, Trabesinger S, Iadecola A, Foix D, Giaume D, and Tarascon J M 2020 Nat. Commun. 11 1252
[23] Huang W Y, Yang L Y, Chen Z F, Liu T C, Ren G X, Shan P Z, Zhang B W, Chen S M, Li S N, Li J Y, Lin C, Zhao W G, Qiu J M, Fang J J, Zhang M J, Dong C, Li F, Yang Y, Sun C J, Ren Y, Huang Q Z, Hou G J, Dou S X, Lu J, Amine K, and Pan F 2022 Adv. Mater. 34 2202745
[24] Niu C J, Pan H L, Xu W, Xiao J, Zhang J G, Luo L L, Wang C M, Mei D H, Meng J S, Wang X P, Liu Z A, Mai L, and Liu J 2019 Nat. Nanotechnol. 14 594
[25] Louli A J, Eldesoky A, Weber R, Genovese M, Coon M, deGooyer J, Deng Z, White R T, Lee J, Rodgers T, Petibon R, Hy S, Cheng S J H, and Dahn J R 2020 Nat. Energy 5 693
[26] Ou X, Liu T C, Zhong W T, Fan X M, Guo X Y, Huang X J, Cao L, Hu J H, Zhang B, Chu Y S, Hu G R, Lin Z, Dahbi M, Alami J, Amine K, Yang C H, and Lu J 2022 Nat. Commun. 13 2319
[27] Cao W Z, Li Q, Yu X Q, and Li H 2022 eScience 2 47
[28] Cao X, Ren X D, Zou L F, Engelhard M H, Huang W, Wang H, Matthews B E, Lee H K, Niu C J, Arey B W, Cui Y, Wang C M, Xiao J, Liu J, Xu W, and Zhang J G 2019 Nat. Energy 4 796
[29] Kondori A, Esmaeilirad M, Harzandi A M, Amine R, Saray M T, Yu L, Liu T C, Wen J G, Shan N N, Wang H H, Ngo A T, Redfern P C, Johnson C S, Amine K, Shahbazian-Yassar R, Curtiss L A, and Asadi M 2023 Science 379 499
[30] Cheng Q, Chen Z X, Li X Y, Hou L P, Bi C X, Zhang X Q, Huang J Q, and Li B Q 2023 J. Energy Chem. 76 181
Related articles from Frontiers Journals
[1] Qingyu Dong, Ruowei Yi, Jizhen Qi, Yanbin Shen, and Liwei Chen. Probing the Air Storage Failure Mechanism of Ni-Rich Layered Cathode Materials[J]. Chin. Phys. Lett., 2022, 39(3): 048201
[2] Di-Xing Ni, Yao-Dong Liu, Zhi Deng, Dian-Cheng Chen, Xin-Xin Zhang, Tao Wang, Shuai Li, and Yu-Sheng Zhao. Wet Mechanical Milling Induced Phase Transition to Cubic Anti-Perovskite Li$_{2}$OHCl[J]. Chin. Phys. Lett., 2022, 39(2): 048201
[3] Le-Qing Zhang, Qing-Tao Xia, Zhao-Hui Li, Yuan-Yuan Han, Xi-Xiang Xu, Xin-Long Zhao, Xia Wang, Yuan-Yuan Pan, Hong-Sen Li, and Qiang Li. Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry[J]. Chin. Phys. Lett., 2022, 39(2): 048201
[4] Zhekai Zhang, Jiyu Tian, Junfei Chen, Yugui He, Chaoyang Liu, Xinmiao Liang, and Jiwen Feng. Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization $^{7}$Li NMR[J]. Chin. Phys. Lett., 2021, 38(12): 048201
[5] Panpan Li , Zhijie Feng , Tao Cheng , Yingchun Lyu, and Bingkun Guo. Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode[J]. Chin. Phys. Lett., 2021, 38(8): 048201
[6] Jiachao Yang, Jian Zou, Chun Luo, Qiwen Ran, Xin Wang, Pengyu Chen, Chuan Hu, Xiaobin Niu, Haining Ji, and Liping Wang. FeSO$_{4}$ as a Novel Li-Ion Battery Cathode[J]. Chin. Phys. Lett., 2021, 38(6): 048201
[7] Changdong Qin, Le Wang, Pengfei Yan, Yingge Du, and Manling Sui. LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations[J]. Chin. Phys. Lett., 2021, 38(6): 048201
[8] Haijuan Wang, Xiao Lan, Yao Huang, Xunyong Jiang. Lithium Storage Property of Graphite/AlCuFe Quasicrystal Composites[J]. Chin. Phys. Lett., 2019, 36(9): 048201
[9] Li-Wei Jiang, Ya-Xiang Lu, Yue-Sheng Wang, Li-Lu Liu, Xing-Guo Qi, Cheng-Long Zhao, Li-Quan Chen, Yong-Sheng Hu. A High-Temperature $\beta$-Phase NaMnO$_{2}$ Stabilized by Cu Doping and Its Na Storage Properties[J]. Chin. Phys. Lett., 2018, 35(4): 048201
[10] Rong-Xue Qiao, Ming-Jian Zhang, Yi-Dong Liu, Wen-Ju Ren, Yuan Lin, Feng Pan. A Novel Real-Time State-of-Health and State-of-Charge Co-Estimation Method for LiFePO$_{4}$ Battery[J]. Chin. Phys. Lett., 2016, 33(07): 048201
[11] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 048201
[12] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 048201
[13] XIA Rong-Sen, CUI Zhong-Hui, LIU Bi-Qiu, GUO Xiang-Xin, ZHAO Jing-Tai. Evolutions of Crystal Structure, Stoichiometry and Electrochemical Behavior with Co Substitution in LiNi1-yCoyO2 Positive Electrodes[J]. Chin. Phys. Lett., 2010, 27(7): 048201
[14] LIN Zhi-Ping, ZHAO Yu-Jun, ZHAO Yan-Ming. Li- Site and Metal-Site Ion Doping in Phosphate-Olivine LiCoPO4 by First-Principles Calculation[J]. Chin. Phys. Lett., 2009, 26(3): 048201
[15] OUYANG Chu-Ying, WANG De-Yu, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries[J]. Chin. Phys. Lett., 2006, 23(1): 048201
Viewed
Full text


Abstract