CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A 700 W$\cdot$h$\cdot$kg$^{-1}$ Rechargeable Pouch Type Lithium Battery |
Quan Li1,2, Yang Yang1,2,3, Xiqian Yu1,2,3*, and Hong Li1,2,3* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Quan Li, Yang Yang, Xiqian Yu et al 2023 Chin. Phys. Lett. 40 048201 |
|
|
Abstract High-energy-density rechargeable lithium batteries are being pursued by researchers because of their revolutionary potential nature. Current advanced practical lithium-ion batteries have an energy density of around 300 W$\cdot$h$\cdot$kg$^{-1}$. Continuing to increase the energy density of batteries to a higher level could lead to a major explosion development in some fields, such as electric aviation. Here, we have manufactured practical pouch-type rechargeable lithium batteries with both a gravimetric energy density of 711.3 W$\cdot$h$\cdot$kg$^{-1}$ and a volumetric energy density of 1653.65 W$\cdot$h$\cdot$L$^{-1}$. This is achieved through the use of high-performance battery materials including high-capacity lithium-rich manganese-based cathode and thin lithium metal anode with high specific energy, combined with extremely advanced process technologies such as high-loading electrode preparation and lean electrolyte injection. In this battery material system, the structural stability of cathode material in a widened charge/discharge voltage range and the deposition/dissolution behavior of interfacial modified thin lithium electrode are studied.
|
|
Received: 03 March 2023
Express Letter
Published: 21 March 2023
|
|
|
|
|
|
[1] | Hiroshi K, Marcelo L, Kenneth I, and Hoi W J C 2021 United Nations, Department of Economic and Social Affairs: Economic Analysis Frontier Technology Issues: Lithium-Ion Batteries: A Pillar for a Fossil Fuel-Free Economy |
[2] | Li Q, Yu X Q, and Li H 2022 eTransportation 14 100201 |
[3] | 2021 U.S. Department of Energy National Blueprint for Lithium Batteries 2021–2030 |
[4] | Edström K 2022 Battery 2030+ Inventing the Sustainable Batteries of the Future: Research Needs and Future Actions, in Roadmap paper |
[5] | Viswanathan V, Epstein A H, Chiang Y M, Takeuchi E, Bradley M, Langford J, and Winter M 2022 Nature 601 519 |
[6] | 2021 U.S. Department of Energy's (DOE) Argonne National Laboratory White Paper: Assessment of the R&D Needs for Electric Aviation |
[7] | Li W J, Xu H Y, Yang Q, Li J M, Zhang Z Y, Wang S B, Peng J Y, Zhang B, Chen X L, and Zhang Z 2020 Energy Storage Sci. Technol. 9 448 |
[8] | Louli A J, Eldesoky A, deGooyer J, Coon M, Aiken C P, Simunovic Z, Metzger M, and Dahn J R 2022 J. Electrochem. Soc. 169 40517 |
[9] | Usubelli C, Besli M M, Kuppan S, Jiang N N, Metzger M, Dinia A, Christensen J, and Gorlin Y 2020 J. Electrochem. Soc. 167 080514 |
[10] | Lin D C, Liu Y Y, and Cui Y 2017 Nat. Nanotechnol. 12 194 |
[11] | Yu L L, Tian Y X, Xiao X, Hou C, Xing Y R, Si Y H, Lu H, and Zhao Y J 2021 J. Electrochem. Soc. 168 050516 |
[12] | Xu K 2004 Chem. Rev. 104 4303 |
[13] | Cheng X B, Zhang R, Zhao C Z, and Zhang Q 2017 Chem. Rev. 117 10403 |
[14] | Xu K 2014 Chem. Rev. 114 11503 |
[15] | Kuang Y D, Chen C J, Kirsch D, and Hu L B 2019 Adv. Energy Mater. 9 1901457 |
[16] | Niu C J, Lee H K, Chen S R, Li Q Y, Du J, Xu W, Zhang J G, Whittingham M S, Xiao J, and Liu J 2019 Nat. Energy 4 551 |
[17] | Eldesoky A, Louli A J, Benson A, and Dahn J R 2021 J. Electrochem. Soc. 168 120508 |
[18] | Pham M T M, Darst J J, Walker W Q, Heenan T M M, Patel D, Iacoviello F, Rack A, Olbinado M P, Hinds G, Brett D J L, Darcy E, Finegan D P, and Shearing P R 2021 Cell Rep. Phys. Sci. 2 100360 |
[19] | Xiong R Y, Zhang Y, Wang Y M, Song L, Li M Y, Yang H, Huang Z G, Li D Q, and Zhou H M 2021 Small Methods 5 2100280 |
[20] | Chang Z, Yang H J, Zhu X Y, He P, and Zhou H S 2022 Nat. Commun. 13 1510 |
[21] | Chen J, Fan X L, Li Q, Yang H B, Khoshi M R, Xu Y B, Hwang S, Chen L, Ji X, Yang C Y, He H X, Wang C M, Garfunkel E, Su D, Borodin O, and Wang C S 2020 Nat. Energy 5 386 |
[22] | Yin W, Grimaud A, Rousse G, Abakumov A M, Senyshyn A, Zhang L T, Trabesinger S, Iadecola A, Foix D, Giaume D, and Tarascon J M 2020 Nat. Commun. 11 1252 |
[23] | Huang W Y, Yang L Y, Chen Z F, Liu T C, Ren G X, Shan P Z, Zhang B W, Chen S M, Li S N, Li J Y, Lin C, Zhao W G, Qiu J M, Fang J J, Zhang M J, Dong C, Li F, Yang Y, Sun C J, Ren Y, Huang Q Z, Hou G J, Dou S X, Lu J, Amine K, and Pan F 2022 Adv. Mater. 34 2202745 |
[24] | Niu C J, Pan H L, Xu W, Xiao J, Zhang J G, Luo L L, Wang C M, Mei D H, Meng J S, Wang X P, Liu Z A, Mai L, and Liu J 2019 Nat. Nanotechnol. 14 594 |
[25] | Louli A J, Eldesoky A, Weber R, Genovese M, Coon M, deGooyer J, Deng Z, White R T, Lee J, Rodgers T, Petibon R, Hy S, Cheng S J H, and Dahn J R 2020 Nat. Energy 5 693 |
[26] | Ou X, Liu T C, Zhong W T, Fan X M, Guo X Y, Huang X J, Cao L, Hu J H, Zhang B, Chu Y S, Hu G R, Lin Z, Dahbi M, Alami J, Amine K, Yang C H, and Lu J 2022 Nat. Commun. 13 2319 |
[27] | Cao W Z, Li Q, Yu X Q, and Li H 2022 eScience 2 47 |
[28] | Cao X, Ren X D, Zou L F, Engelhard M H, Huang W, Wang H, Matthews B E, Lee H K, Niu C J, Arey B W, Cui Y, Wang C M, Xiao J, Liu J, Xu W, and Zhang J G 2019 Nat. Energy 4 796 |
[29] | Kondori A, Esmaeilirad M, Harzandi A M, Amine R, Saray M T, Yu L, Liu T C, Wen J G, Shan N N, Wang H H, Ngo A T, Redfern P C, Johnson C S, Amine K, Shahbazian-Yassar R, Curtiss L A, and Asadi M 2023 Science 379 499 |
[30] | Cheng Q, Chen Z X, Li X Y, Hou L P, Bi C X, Zhang X Q, Huang J Q, and Li B Q 2023 J. Energy Chem. 76 181 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|