Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 049501    DOI: 10.1088/0256-307X/40/4/049501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Dark Contributions to $h\to \mu^+\mu^-$ in the Presence of a $\mu$-Flavored Vector-Like Lepton
Bibhabasu De*
Department of Physics, ICFAI University Tripura, Kamalghat-799210, India
Cite this article:   
Bibhabasu De 2023 Chin. Phys. Lett. 40 049501
Download: PDF(2579KB)   PDF(mobile)(2588KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple extension of the standard model (SM) with a $\mu$-flavored vector-like lepton (VLL) doublet and a real singlet scalar can have an interesting implication to the $h \to\mu^+\mu^-$ decay while offering the simplest possible explanation for the dark matter (DM) phenomenology. Assuming the real singlet scalar to be a viable DM candidate, it has been shown that the muon Yukawa coupling can have a negative contribution at the one-loop order if the $2^{\rm nd}$ generation SM leptons are allowed to couple with the VLL doublet. The stringent direct detection bounds corresponding to a real singlet scalar DM can easily be relaxed if the SM quark sector was augmented with a dimension-6 operator at some new physics (NP) scale $\varLambda_{\scriptscriptstyle{\rm NP}}$. Thus, this model presents a significant phenomenological study where the muon Yukawa coupling can be corrected within a real singlet scalar DM framework. The considered parameter space can be tested/constrained through the high luminosity run of the LHC (HL-LHC) and future direct detection experiments.
Received: 30 January 2023      Published: 29 March 2023
PACS:  95.85.Ry (Neutrino, muon, pion, and other elementary particles; cosmic rays)  
  95.30.Cq (Elementary particle processes)  
  14.80.Ec (Other neutral Higgs bosons)  
  12.60.-i (Models beyond the standard model)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/049501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/049501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bibhabasu De
[1] Aad G, Abbott B, Abdallah J et al. (ATLAS collaboration) 2012 Phys. Lett. B 716 1
[2] Chatrchyan S, Khachatryan V, Sirunyan A M et al. (CMS collaboration) 2012 Phys. Lett. B 716 30
[3] Aad G et al. (ATLAS collaboration) 2019 arXiv:1909.02845 [hep-ex]
[4] Sirunyan A M, Tumasyan A, Adam W et al. (CMS collaboration) 2021 J. High Energy Phys. 2021(01) 148
[5] Borriello A and Salucci P 2001 Mon. Not. Roy. Astron. Soc. 323 285
[6] Hoekstra H, Yee H, and Gladders M 2002 New Astron. Rev. 46 767
[7] Bennett C L, Larson D, Weiland J L, Jarosik N, Hinshaw G, Odegard N, Smith K M, Hill R S, Gold B, Halpern M, Komatsu E, Nolta M R, Page L, Spergel D N, Wollack E, Dunkley J, Kogut A, Limon M, Meyer S S, Tucker G S, and Wright E L 2013 Astrophys. J. Suppl. Ser. 208 20
[8] Steigman G and Turner M S 1985 Nucl. Phys. B 253 375
[9] McDonald J 1994 Phys. Rev. D 50 3637
[10] Cline J M, Kainulainen K, Scott P, and Weniger C 2013 Phys. Rev. D 88 055025
[11] Athron P, Cornell J M, Kahlhoefer F, Mckay J, Scott P, and Wild S 2018 Eur. Phys. J. C 78 830
[12] Aalbers J et al. (LZ collaboration) 2022 arXiv:2207.03764 [hep-ex]
[13] Das D, De B, and Mitra S 2021 Phys. Lett. B 815 136159
[14] Bishara F, Brod J, Uttarayat P, and Zupan J 2016 J. High Energy Phys. 2016(01) 010
[15] Adhikari R, Bhat I A, Borah D, Ma E, and Nanda D 2022 Phys. Rev. D 105 035006
[16] Chiang C W, Obuchi R, and Yagyu K 2022 J. High Energy Phys. 2022(05) 070
[17] Kowalska K and Sessolo E M 2021 Phys. Rev. D 103 115032
[18] Hewett J L and Rizzo T G 1989 Phys. Rep. 183 193
[19] Langacker P 1981 Phys. Rep. 72 185
[20] Antoniadis I 1990 Phys. Lett. B 246 377
[21] Minkowski P 1977 Phys. Lett. B 67 421
[22] Foot R, Lew H, He X G, and Joshi G C 1989 Z. Phys. C 44 441
[23] Crivellin A, Kirk F, Manzari C A, and Montull M 2020 J. High Energy Phys. 2020(12) 166
[24]Kondratyev D 2022 Ph.D. Dessertation (Purdue University)
[25] Sirunyan A M, Tumasyan A, Adam W et al. (CMS collaboration) 2019 Phys. Rev. D 100 052003
[26] Bißmann S, Hiller G, Hormigos-Feliu C, and Litim D F 2021 Eur. Phys. J. C 81 101
[27] Bélanger G, Boudjema F, Pukhov A, and Semenov A 2009 Comput. Phys. Commun. 180 747
[28] Jarosik N, Bennett C L, Dunkley J, Gold B, Greason M R, Halpern M, Hill R S, Hinshaw G, Kogut A, and Komatsu E 2011 Astrophys. J. Suppl. Ser. 192 14
[29] Aghanim N et al. (Planck collaboration) 2018 arXiv:1807.06209 [astro-ph.CO]
[30] Aprile E et al. (XENON collaboration) 2020 arXiv:2007.08796 [physics.ins-det]
[31]Romão J C 2020 Advanced Quantum Field Theory (Instituto Superior Técnico)
[32] Allwicher L, Arnan P, Barducci D, and Nardecchia M 2021 J. High Energy Phys. 2021(10) 129
[33] Abi B, Albahri T, Al Kilani S et al. (Muon g 2 collaboration) 2021 Phys. Rev. Lett. 126 141801
[34] Albahri T, Anastasi A, Anisenkov A et al. (Muon g 2 collaboration) 2021 Phys. Rev. D 103 072002
Related articles from Frontiers Journals
[1] SUN Xinxin, TAN Youheng, YUAN Yukui, DONG Yuju, YUAN Peng, ZHANG Huimin, LI Jing, WANG Hui, HUO Anxiang . Search for Cosmic Ray Bursts with Energy Above 1014eV[J]. Chin. Phys. Lett., 1995, 12(1): 049501
Viewed
Full text


Abstract