Chin. Phys. Lett.  2023, Vol. 40 Issue (2): 027502    DOI: 10.1088/0256-307X/40/2/027502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Topological Magnons in Kitaev Magnets with Finite Dzyaloshinskii–Moriya Interaction at High Field
Kangkang Li*
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Cite this article:   
Kangkang Li 2023 Chin. Phys. Lett. 40 027502
Download: PDF(8001KB)   PDF(mobile)(8166KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract There have been intensive studies on Kitaev materials for the sake of realization of exotic states such as quantum spin liquid and topological orders. In realistic materials, the Kitaev interaction may coexist with the Dzyaloshinskii–Moriya interaction, and it is of challenge to distinguish their magnitudes separately. Here, we study the topological magnon excitations and related thermal Hall conductivity of kagome magnet exhibiting Heisenberg, Kitaev and Dzyaloshinskii–Moriya interactions exposed to a magnetic field. In a strong magnetic field perpendicular to the plane of the lattice ([111] direction) that brings the system into a fully polarized paramagnetic phase, we find that the magnon bands carry nontrivial Chern numbers in the full region of the phase diagram. Furthermore, there are phase transitions related to two topological phases with opposite Chern numbers, which lead to the sign changes of the thermal Hall conductivity. In the phase with negative thermal conductivity, the Kitaev interaction is relatively large and the width of the phase increases with the strength of Dzyaloshinskii–Moriya interaction. Hence, the present study will contribute to the understanding of related compounds.
Received: 23 November 2022      Published: 05 February 2023
PACS:  75.30.Ds (Spin waves)  
  75.50.Dd (Nonmetallic ferromagnetic materials)  
  75.70.Rf (Surface magnetism)  
  75.90.+w (Other topics in magnetic properties and materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/2/027502       OR      https://cpl.iphy.ac.cn/Y2023/V40/I2/027502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kangkang Li
[1] Rousochatzakis I, Reuther J, Thomale R, Rachel S, and Perkins N B 2015 Phys. Rev. X 5 041035
[2] Lee E K H, Schaffer R, Bhattacharjee S, and Kim Y B 2014 Phys. Rev. B 89 045117
[3] Nasu J, Udagawa M, and Motome Y 2014 Phys. Rev. Lett. 113 197205
[4] Takayama T, Kato A, Dinnebier R, Nuss J, Kono H, Veiga L S I, Fabbris G, Haskel D, and Takagi H 2015 Phys. Rev. Lett. 114 077202
[5] Jahromi S S, Kargarian M, Masoudi S F, and Langari A 2016 Phys. Rev. B 94 125145
[6] Jahromi S S, Orús R, Kargarian M, and Langari A 2018 Phys. Rev. B 97 115161
[7] Kishimoto M, Morita K, Matsubayashi Y, Sota S, Yunoki S, and Tohyama T 2018 Phys. Rev. B 98 054411
[8] Kimchi I and Vishwanath A 2014 Phys. Rev. B 89 014414
[9] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[10] Moriya T 1960 Phys. Rev. 120 91
[11] Gao Y H, Hickey C, Xiang T, Trebst S, and Chen G 2019 Phys. Rev. Res. 1 013014
[12] Zhang L C, Zhu F, Go D, Lux F R, dos S F J, Lounis S, Su Y, Blügel S, and Mokrousov Y 2021 Phys. Rev. B 103 134414
[13] Joshi D G 2018 Phys. Rev. B 98 060405
[14] Chern L E, Zhang E Z, and Kim Y B 2021 Phys. Rev. Lett. 126 147201
[15] McClarty P A, Dong X Y, Gohlke M, Rau J G, Pollmann F, Moessner R, and Penc K 2018 Phys. Rev. B 98 060404
[16] Li K 2022 arXiv:2209.04133 [cond-mat.str-el]
[17] Katsura H, Nagaosa N, and Lee P A 2010 Phys. Rev. Lett. 104 066403
[18] Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, and Tokura Y 2010 Science 329 297
[19] Hirschberger M, Chisnell R, Lee Y S, and Ong N P 2015 Phys. Rev. Lett. 115 106603
[20] Chisnell R, Helton J S, Freedman D E, Singh D K, Bewley R I, Nocera D G, and Lee Y S 2015 Phys. Rev. Lett. 115 147201
[21] Owerre S A 2016 J. Phys.: Condens. Matter 28 386001
[22] Zhang L F, Ren J, Wang J S, and Li B W 2013 Phys. Rev. B 87 144101
[23] Li K K, Li C Y, Hu J P, Li Y, and Fang C 2017 Phys. Rev. Lett. 119 247202
[24] Li K K and Hu J P 2017 Chin. Phys. Lett. 34 077501
[25] Cao X D, Chen K, and He D H 2015 J. Phys.: Condens. Matter 27 166003
[26] Morita K, Kishimoto M, and Tohyama T 2018 Phys. Rev. B 98 134437
[27] Yang Y, Perkins N B, Koç F, Lin C H, and Rousochatzakis I 2020 Phys. Rev. Res. 2 033217
[28] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[29] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[30] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[31] Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959
[32] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[33] Matsumoto R and Murakami S 2011 Phys. Rev. Lett. 106 197202
[34] Matsumoto R and Murakami S 2011 Phys. Rev. B 84 184406
[35] Matsumoto R, Shindou R, and Murakami S 2014 Phys. Rev. B 89 054420
Related articles from Frontiers Journals
[1] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 027502
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 027502
[3] Xiaoxue Zhao, Kejing Ran, Jinghui Wang, Song Bao, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Bo Zhang, Shufan Cheng, Hao Xu, Wei Wang, Zhao-Yang Dong, Siqin Meng, Zhilun Lu, Shin-ichiro Yano, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(5): 027502
[4] Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(2): 027502
[5] Di Wang, Jihai Yu, Feng Tang, Yuan Li, and Xiangang Wan. Determination of the Range of Magnetic Interactions from the Relations between Magnon Eigenvalues at High-Symmetry $k$ Points[J]. Chin. Phys. Lett., 2021, 38(11): 027502
[6] Qiuyang Li, Suqin Xiong, Lina Chen, Kaiyuan Zhou, Rongxin Xiang, Haotian Li, Zhenyu Gao, Ronghua Liu, and Youwei Du. Spin-Wave Dynamics in an Artificial Kagome Spin Ice[J]. Chin. Phys. Lett., 2021, 38(4): 027502
[7] Mao Yang, Xianyang Lu, Bo Liu, Xuezhong Ruan, Junran Zhang, Xiaoqian Zhang, Dawei Huang, Jing Wu, Jun Du, Bo Liu, Hao Meng, Liang He, and Yongbing Xu. Tuning of the Magnetic Damping Parameter by Varying Cr Composition in Fe$_{1-x}$Cr$_x$ Alloy[J]. Chin. Phys. Lett., 2020, 37(10): 027502
[8] Yizhe Sun, Moorthi Kanagaraj, Qinwu Gao, Yafei Zhao, Jiai Ning, Kunpeng Zhang, Xianyang Lu, Liang He, and Yongbing Xu. Site Preference of Se and Te in Bi$_2$Se$_{3-x}$Te$_x$ Thin Films[J]. Chin. Phys. Lett., 2020, 37(7): 027502
[9] Kang-Kang Li, Jiang-Ping Hu. Weyl and Nodal Ring Magnons in Three-Dimensional Honeycomb Lattices[J]. Chin. Phys. Lett., 2017, 34(7): 027502
[10] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 027502
[11] LI Shu-Fa, HE Pan, CHENG Chu-Yuan, ZHOU Shi-Ming, LAI Tian-Shu. Spin-Wave Modes in Exchange-Coupled FePt/FeNi Bilayer Films[J]. Chin. Phys. Lett., 2014, 31(1): 027502
[12] DONG Zhan-Hai. 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings[J]. Chin. Phys. Lett., 2009, 26(10): 027502
[13] LU Feng, SONG Yun, CHEN Dong-Meng, ZOU Liang-Jian. Orbital Order and Orbital Excitations in Degenerate Itinerant Electron Systems[J]. Chin. Phys. Lett., 2009, 26(9): 027502
[14] WU Bao-Jian, GAO Xiang. Magnetostatic-Wave-Based Magneto-Optic Pulse Compression by Control of Phase Mismatching[J]. Chin. Phys. Lett., 2008, 25(11): 027502
[15] WU Bao-Jian, QIU Kun. Magneto-Optic Coupling Theory for Guided Optical Waves and Magnetostatic Waves Using an Arbitrarily Tilted Bias Magnetic Field[J]. Chin. Phys. Lett., 2005, 22(9): 027502
Viewed
Full text


Abstract