Chin. Phys. Lett.  2023, Vol. 40 Issue (2): 028801    DOI: 10.1088/0256-307X/40/2/028801
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Low-Temperature Aqueous Na-Ion Batteries: Strategies and Challenges of Electrolyte Design
Qiubo Guo, Shuai Han, Yaxiang Lu*, Liquan Chen, and Yong-Sheng Hu*
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Qiubo Guo, Shuai Han, Yaxiang Lu et al  2023 Chin. Phys. Lett. 40 028801
Download: PDF(21221KB)   PDF(mobile)(21215KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Aqueous Na-ion batteries (ANIBs) are considered to be promising secondary battery systems for grid-scale energy storage applications and have attracted widespread attention due to their unique merits of rich resources of Na, as well as the inherent safety and low cost of aqueous electrolytes. However, the narrow electrochemical stability widow and high freezing point of traditional dilute aqueous electrolytes restrict their multi-scenario applications. Considering the charge-storage mechanism of ANIBs, the optimization and design of aqueous Na-based electrolytes dominate their low-temperature performance, which is also hot off the press in this field. In this review, we first systematically comb the research progress of the novel electrolytes and point out their remaining challenges in ANIBs. Then our perspectives on how to further improve the low-temperature performance of ANIBs will also be discussed. Finally, this review briefly sheds light on the potential direction of low-temperature ANIBs, which would guide the future design of high-performance aqueous rechargeable batteries.
Received: 22 December 2022      Review Published: 04 February 2023
PACS:  82.47.Uv (Electrochemical capacitors; supercapacitors)  
  84.60.Ve (Energy storage systems, including capacitor banks)  
  88.80.F- (Energy storage technologies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/2/028801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I2/028801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiubo Guo
Shuai Han
Yaxiang Lu
Liquan Chen
and Yong-Sheng Hu
[1] Evans A, Strezov V, and Evans T J 2012 Renewable Sustainable Energy Rev. 16 4141
[2] Luo B, Ye D, and Wang L 2017 Adv. Sci. 4 1700104
[3] Grey C P and Tarascon J M 2017 Nat. Mater. 16 45
[4] Dunn B, Kamath H, and Tarascon J M 2011 Science 334 928
[5] Goodenough J B 2013 Acc. Chem. Res. 46 1053
[6] Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, and Liu J 2011 Chem. Rev. 111 3577
[7] Schmidt O, Hawkes A, Gambhir A, and Staffell I 2017 Nat. Energy 2 17110
[8] Dai H L, Dong J, Wu M J, Hu Q M, Wang D N, Zuin L, Chen N, Lai C, Zhang G X, and Sun S H 2021 Angew. Chem. Int. Ed. 60 19852
[9] Kim H, Hong J, Park K Y, Kim H, Kim S W, and Kang K 2014 Chem. Rev. 114 11788
[10] Liu Z X, Huang Y, Huang Y, Yang Q, Li X L, Huang Z D, and Zhi C Y 2020 Chem. Soc. Rev. 49 180
[11] Fang G Z, Zhou J, Pan A Q, and Liang S Q 2018 ACS Energy Lett. 3 2480
[12] Tang W, Zhu Y, Hou Y, Liu L, Wu Y, Loh K P, Zhang H, and Zhu K 2013 Energy & Environ. Sci. 6 2093
[13] Bin D, Wang F, Tamirat A G, Suo L, Wang Y, Wang C, and Xia Y 2018 Adv. Energy Mater. 8 1703008
[14] Suo L M, Borodin O, Wang Y S, Rong X H, Sun W, Fan X L, Xu S Y, Schroeder M A, Cresce A V, Wang F, Yang C, Hu Y S, Xu K, and Wang C S 2017 Adv. Energy Mater. 7 1701189
[15] Xie F, Lu Y X, Chen L Q, and Hu Y S 2021 Chin. Phys. Lett. 38 118401
[16] Wang M, Wang Q, Ding X, Wang Y, Xin Y, Singh P, Wu F, and Gao H 2022 Interdiscip. Mater. 1 373
[17] Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta A M, and Pietrucci F 2017 Phys. Rev. Lett. 119 245701
[18] Leadbetter A J, Ward R C, Clark J W, Tucker P A, Matsuo T, and Suga H 1985 J. Chem. Phys. 82 424
[19] Wang X, Huang H, Zhou F, Das P, Wen P, Zheng S, Lu P, Yu Y, and Wu Z S 2021 Nano Energy 82 105688
[20] Zhang Y, Xu J, Li Z, Wang Y, Wang S, Dong X, and Wang Y 2022 Sci. Bull. 67 161
[21] Sun T J, Liu C, Wang J Y, Nian Q S, Feng Y Z, Zhang Y, Tao Z L, and Chen J 2020 Nano Res. 13 676
[22] Hribar B, Southall N T, Vlachy V, and Dill K A 2002 J. Am. Chem. Soc. 124 12302
[23] Chua R, Cai Y, Lim P Q, Kumar S, Satish R, Jr W M, Ren H, Verma V, Meng S, Morris S A, Kidkhunthod P, Bai J, and Srinivasan M 2020 ACS Appl. Mater. & Interfaces 12 22862
[24] Nian Q, Wang J, Liu S, Sun T, Zheng S, Zhang Y, Tao Z, and Chen J 2019 Angew. Chem. Int. Ed. 58 16994
[25] Sun Y, Zhang Y, Xu Z, Gou W, Han X, Liu M, and Li C M 2022 ChemSusChem 15 e202201362
[26] Wang H, Liu T, Du X, Wang J, Yang Y, Qiu H, Lu G, Li H, Chen Z, Zhao J, and Cui G 2022 Batteries Supercaps 5 e202200246
[27] Cheng Y G, Chi X W, Yang J H, and Liu Y 2021 J. Energy Storage 40 102701
[28] Liu S, Lei T, Song Q, Zhu J, and Zhu C 2022 ACS Appl. Mater. & Interfaces 14 11425
[29] Rong J Z, Cai T X, Bai Y Z, Zhao X, Wu T, Wu Y K, Zhao W, Dong W J, Xu S M, Chen J, and Huang F Q 2022 Cell Rep. Phys. Sci. 3 100805
[30] Zhu K, Sun Z, Li Z, Liu P, Chen X, and Jiao L 2022 Energy Storage Mater. 53 523
[31] Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, and Xu K 2015 Science 350 938
[32] Liang Y L, Jing Y, Gheytani S, Lee K Y, Liu P, Facchetti A, and Yao Y 2017 Nat. Mater. 16 841
[33] Sun T J, Du H H, Zheng S B, Shi J Q, and Tao Z L 2021 Adv. Funct. Mater. 31 2010127
[34] Yue F, Tie Z W, Deng S Z, Wang S, Yang M, and Niu Z Q 2021 Angew. Chem. Int. Ed. 60 13882
[35] Chen S, Wang T, Ma L, Zhou B, Wu J, Zhu D, Li Y Y, Fan J, and Zhi C 2022 Chem (in press)
[36] Zhu K J, Li Z P, Sun Z Q, Liu P, Jin T, Chen X C, Li H X, Lu W B, and Jiao L F 2022 Small 18 2107662
[37] Zhu K J, Sun Z Q, Jin T, Chen X C, Si Y C, Li H X, and Jiao L F 2022 Batteries Supercaps 5 e202200308
[38] Reber D, Kühnel R S, and Battaglia C 2019 ACS Mater. Lett. 1 44
[39] Bu X D, Zhang Y R, Sun Y G, Su L J, Meng J N, Lu X G, and Yan X B 2020 J. Energy Chem. 49 198
[40] Zhang Q, Ma Y, Lu Y, Li L, Wan F, Zhang K, and Chen J 2020 Nat. Commun. 11 4463
[41] Bi H B, Wang X S, Liu H L, He Y L, Wang W J, Deng W J, Ma X L, Wang Y S, Rao W, Chai Y Q, Ma H, Li R, Chen J T, Wang Y, and Xue M Q 2020 Adv. Mater. 32 2000074
[42] Ao H S, Chen C Y, Hou Z G, Cai W L, Liu M K, Jin Y A, Zhang X, Zhu Y C, and Qian Y T 2020 J. Mater. Chem. A 8 14190
[43] Zhang X Q, Dong M F, Xiong Y L, Hou Z G, Ao H S, Liu M K, Zhu Y C, and Qian Y T 2020 Small 16 2003585
[44] Nian Q S, Liu S, Liu J, Zhang Q, Shi J Q, Liu C, Wang R, Tao Z L, and Chen J 2019 ACS Appl. Energy Mater. 2 4370
Related articles from Frontiers Journals
[1] Fei Xie , Yaxiang Lu, Liquan Chen , and Yong-Sheng Hu. Recent Progress in Presodiation Technique for High-Performance Na-Ion Batteries[J]. Chin. Phys. Lett., 2021, 38(11): 028801
Viewed
Full text


Abstract