Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 128101    DOI: 10.1088/0256-307X/40/12/128101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Determination of Work Function for p- and n-Type 4H-SiC Single Crystals via Scanning Kelvin Probe Force Microscopy
Hui Li1,3*, Guobin Wang1,2, Jingyu Yang1,2, Zesheng Zhang1, Jun Deng1, and Shixuan Du1,3
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Hui Li, Guobin Wang, Jingyu Yang et al  2023 Chin. Phys. Lett. 40 128101
Download: PDF(8340KB)   PDF(mobile)(8355KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Silicon carbide (SiC) is a promising platform for fabricating high-voltage, high-frequency and high-temperature electronic devices such as metal oxide semiconductor field effect transistors in which many junctions or interfaces are involved. The work function (WF) plays an essential role in these devices. However, studies of the effect of conductive type and polar surfaces on the WF of SiC are limited. Here, we report the measurement of WFs of Si- and C-terminated polar surfaces for both p-type and n-type conductive 4H-SiC single crystals by scanning Kelvin probe microscopy (SKPFM). The results show that p-type SiC exhibits a higher WF than n-type SiC. The WF of a C-terminated polar surface is higher than that of a Si-terminated polar surface, which is further confirmed by first-principles calculations. By revealing this long-standing knowledge gap, our work facilitates the fabrication and development of SiC-based electronic devices, which have tremendous potential applications in electric vehicles, photovoltaics, and so on. This work also shows that SKPFM is a good method for identifying polar surfaces of SiC and other polar materials nondestructively, quickly and conveniently.
Received: 09 September 2023      Published: 17 December 2023
PACS:  81.00  
  85.30.-z (Semiconductor devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/128101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/128101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Li
Guobin Wang
Jingyu Yang
Zesheng Zhang
Jun Deng
and Shixuan Du
[1] Shao G S 2021 Energy Environ. Mater. 4 273
[2] Eddy C R and Gaskill D K 2009 Science 324 1398
[3] La Via F, Alquier D, Giannazzo F, Kimoto T, Neudeck P, Ou H, Roncaglia A, Saddow S E E, and Tudisco S 2023 Micromachines 14 1200
[4] Kimoto T and Cooper J A 2014 Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications (New York: Wiley) p 189
[5]Wang G, Wang W J, Peng T H, Guo L W, and Chen X L 2018 Science: HUMBLE BEGINNINGS, BRIGHT FUTURE Institute of Physics (CAS) at 90 p 51
[6] Wang G, Sheng D, Yang Y, Li H, Chai C, Xie Z, Wang W, Guo J, and Chen X 2023 Energy Environ. Mater. 0 e12678
[7] Wang G B, Sheng D, Li H, Zhang Z S, Guo L L, Guo Z G, Yuan W X, Wang W X, and Chen X L 2023 CrystEngComm 25 560
[8] Pelletier J, Gervais D, and Pomot C 1984 J. Appl. Phys. 55 994
[9] Greiner M T, Chai L, Helander M G, Tang W M, and Lu Z H 2012 Adv. Funct. Mater. 22 4557
[10] Hutchison J A, Liscio A, Schwartz T, Canaguier-Durand A, Genet C, Palermo V, Samori P, and Ebbesen T W 2013 Adv. Mater. 25 2481
[11] Li L K, Jurkovic M J, Wang W I, Van Hove J M, and Chow P P 2000 Appl. Phys. Lett. 76 1740
[12] Marien J 1976 Phys. Status Solidi A 38 513
[13] Sumiya M, Yoshimura K, Ito T, Ohtsuka K, Fuke S, Mizuno K, Yoshimoto M, Koinuma H, Ohtomo A, and Kawasaki M 2000 J. Appl. Phys. 88 1158
[14] Tang C G, Ang M C Y, Choo K K, Keerthi V, Tan J K, Syafiqah M N, Kugler T, Burroughes J H, Png R Q, Chua L L, and Ho P K H 2016 Nature 539 536
[15] Zhong W W, Huang Y F, Gan D, Xu J Y, Li H, Wang G, Meng S, and Chen X L 2016 Phys. Chem. Chem. Phys. 18 28033
[16] Musolino M, Carria E, Crippa D, Preti S, Azadmand M, Mauceri M, Isacson M, Calabretta M, and Messina A 2023 Microelectron. Eng. 274 111976
[17] Kimoto T 2015 Jpn. J. Appl. Phys. 54 040103
[18]Chen Y, Gong L, Du X, Chen S, Xie W, Zhang W, Chen J, and Xie F 2018 J. Instrum. Anal. 37 796 (in Chinese)
[19] Kennou S 1995 J. Appl. Phys. 78 587
[20] de Wit J H W 2004 Electrochim. Acta 49 2841
[21] Koley G and Spencer M G 2001 J. Appl. Phys. 90 337
[22] Li H, Liu X X, Lin Y S, Yang B, and Du Z M 2015 Phys. Chem. Chem. Phys. 17 11150
[23] Jaramillo R and Ramanathan S 2011 Adv. Funct. Mater. 21 4068
[24] Paier J, Hirschl R, Marsman M, and Kresse G 2005 J. Chem. Phys. 122 234102
[25] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[26] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[27] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28] Beattie J M A, Goss J P, Rayson M J, and Briddon P R 2021 J. Phys.: Condens. Matter 33 165003
[29] Wang S C, Zhan M J, Wang G, Xuan H W, Zhang W, Liu C J, Xu C H, Liu Y, Wei Z Y, and Chen X L 2013 Laser & Photonics Rev. 7 831
[30] Nakashima S, Harima H, and Solidi P S 1997 Phys. Status Solidi A 162 39
[31] Luo M, Wu F, Long M, and Chen X 2018 Nanotechnology 29 444001
[32] Müller R, Künecke U, Weingärtner R, Schmitt H, Desperrier P, and Wellmann P J 2004 Mater. Sci. Forum 483 31
[33]Wang G, Li H, Sheng D, Wang W, and Chen X 2022 J. Synth. Cryst. 51 3 (in Chinese)
[34] Eto K, Suo H, Kato T, and Okumura H 2017 J. Cryst. Growth 470 154
[35] Xie X J, Sun L, Chen X F, Yang X L, Hu X B, and Xu X G 2019 Scr. Mater. 167 76
[36] Zhong G L, Xie X J, Wang D S, Wang X L, Sun L, Yang X L, Peng Y, Chen X F, Hu X B, and Xu X G 2022 CrystEngComm 24 7861
[37] Rohwerder M and Turcu F 2007 Electrochim. Acta 53 290
[38] Lorenz P, Haensel T, Gutt R, Koch R J, Schaefer J A, and Krischok S 2010 Phys. Status Solidi B 247 1658
[39] Hu G, Fung V, Huang J, and Ganesh P 2021 J. Phys. Chem. Lett. 12 2320
[40] Zhang L and Cui Z 2022 Front. Mater. 9 956675
[41] Monfort O and Plesch G 2018 Environ. Sci. Pollut. R. 25 19362
[42] Yang X, Gan H, Tian Y, Peng L, Xu N, Chen J, Chen H, Deng S, Liang S D, and Liu F 2017 Sci. Rep. 7 13057
[43] Lin L, Jacobs R, Chen D, Vlahos V, Lu-Steffes O, Alonso J A, Morgan D, and Booske J 2022 Adv. Funct. Mater. 32 2203703
Viewed
Full text


Abstract