CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Chiral Dirac Fermion in a Collinear Antiferromagnet |
Ao Zhang1†, Ke Deng1†, Jieming Sheng1,2†, Pengfei Liu1†, Shiv Kumar3, Kenya Shimada3, Zhicheng Jiang4, Zhengtai Liu4, Dawei Shen4, Jiayu Li1, Jun Ren1, Le Wang1, Liang Zhou1, Yoshihisa Ishikawa5, Takashi Ohhara6, Qiang Zhang7, Garry McIntyre8, Dehong Yu8, Enke Liu9, Liusuo Wu1*, Chaoyu Chen1*, and Qihang Liu1* |
1Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 2Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China 3Hiroshima Synchrotron Radiation Centre, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan 4State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 5Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan 6Neutron Science Section, J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan 7Neutron Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 8Australian Nuclear Science and Technology Organisation, Locked bag 2001, Kirrawee DC, New South Wales 2232, Australia 9State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Ao Zhang, Ke Deng, Jieming Sheng et al 2023 Chin. Phys. Lett. 40 126101 |
|
|
Abstract In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral “Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden $SU(2)$ symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb$_{3}$S$_{6}$. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions. Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb$_{3}$S$_{6}$, paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.
|
|
Received: 30 November 2023
Express Letter
Published: 08 December 2023
|
|
PACS: |
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A 2005 Nature 438 197 |
[2] | Fu L, Kane C L, and Mele E J 2007 Phys. Rev. Lett. 98 106803 |
[3] | Moore J E and Balents L 2007 Phys. Rev. B 75 121306 |
[4] | Shen S Q 2012 Topological Insulators. In: Springer Series in Solid-State Sciences vol 174 (Berlin: Springer) |
[5] | Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, and Rappe A M 2012 Phys. Rev. Lett. 108 140405 |
[6] | Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, and Fang Z 2012 Phys. Rev. B 85 195320 |
[7] | Wang Z J, Weng H M, Wu Q S, Dai X, and Fang Z 2013 Phys. Rev. B 88 125427 |
[8] | Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898 |
[9] | Hua G Y, Nie S M, Song Z D, Yu R, Xu G, and Yao K L 2018 Phys. Rev. B 98 201116 |
[10] | Wan X G, Turner A M, Vishwanath A, and Savrasov S Y 2011 Phys. Rev. B 83 205101 |
[11] | Fang C, Gilbert M J, Dai X, and Bernevig B A 2012 Phys. Rev. Lett. 108 266802 |
[12] | Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 |
[13] | Altland A, Simons B D, and Zirnbauer M R 2002 Phys. Rep. 359 283 |
[14] | Kargarian M, Randeria M, and Lu Y M 2016 Proc. Natl. Acad. Sci. USA 113 8648 |
[15] | Rao Z C et al. 2019 Nature 567 496 |
[16] | Yuan Q Q et al. 2019 Sci. Adv. 5 eaaw9485 |
[17] | Xu X T et al. 2019 Phys. Rev. B 100 045104 |
[18] | Huber N et al. 2022 Phys. Rev. Lett. 129 026401 |
[19] | Yu Z M, Zhang Z, Liu G B, Wu W, Li X P, Zhang R W, Yang S A, and Yao Y 2022 Sci. Bull. 67 375 |
[20] | Liu P F, Zhang A, Han J Z, and Liu Q H 2022 Innovation 3 100343 |
[21] | Brinkman W F and Elliott R J 1966 Proc. R. Soc. A 294 1438 |
[22] | Litvin D B and Opechowski W 1974 Physica 76 538 |
[23] | Liu P F, Li J Y, Han J Z, Wan X G, and Liu Q H 2022 Phys. Rev. X 12 021016 |
[24] | Ghimire N J, Botana A S, Jiang J S, Zhang J J, Chen Y S, and Mitchell J F 2018 Nat. Commun. 9 3280 |
[25] | Tenasini G et al. 2020 Phys. Rev. Res. 2 023051 |
[26] | Mangelsen S, Zimmer P, Nather C, Mankovsky S, Polesya S, Ebert H, and Bensch W 2021 Phys. Rev. B 103 184408 |
[27] | Tanaka H et al. 2022 Phys. Rev. B 105 L121102 |
[28] | Yang X P et al. 2022 Phys. Rev. B 105 L121107 |
[29] | Popčević P et al. 2022 Phys. Rev. B 105 155114 |
[30] | Bertaut E F 1968 Acta Cryst. A 24 217 |
[31] | Parkin S S P, Marseglia E A, and Brown P J 1983 J. Phys. C 16 2765 |
[32] | Damascelli A, Hussain Z, and Shen Z X 2003 Rev. Mod. Phys. 75 473 |
[33] | Gu P et al. 2023 arXiv:2306.09616 [cond-mat.mes-hall] |
[34] | Gao A Y et al. 2021 Nature 595 521 |
[35] | Chen R, Sun H P, Gu M, Hua C B, Liu Q, Lu H Z, and Xie X C 2022 Natl. Sci. Rev. 2022 nwac140 |
[36] | Takagi H et al. 2023 Nat. Phys. 19 961 |
[37] | Park P et al. 2023 arXiv:2303.03760 [cond-mat.str-el] |
[38] | Chen W J et al. 2021 Phys. Rev. B 103 L180404 |
[39] | Yao W L, Zhao Y, Qiu Y M, Balz C, Stewart J R, Lynn J W, and Li Y 2023 Phys. Rev. Res. 5 L022045 |
[40] | Šmejkal L, Sinova J, and Jungwirth T 2022 Phys. Rev. X 12 031042 |
[41] | Šmejkal L, Sinova J, and Jungwirth T 2022 Phys. Rev. X 12 040501 |
[42] | Chen X, Ren J, Li J, Liu Y, and Liu Q 2023 arXiv:2307.12366 [cond-mat.mtrl-sci] |
[43] | Edwards A J 2011 Aust. J. Chem. 64 869 |
[44] | Ohhara T et al. 2016 J. Appl. Crystallogr. 49 120 |
[45] | Huq A, Hodges J P, Gourdon O, and Heroux L 2011 Z. Kristallogr. Proc. 1 127 |
[46] | Rodríguez-Carvajal J 1993 Physica B 192 55 |
[47] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[48] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 |
[49] | Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864 |
[50] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 |
[51] | Perdew J P, Burke K, and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396 |
[52] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[53] | Liechtenstein A I, Anisimov V I, and Zaanen J 1995 Phys. Rev. B 52 R5467 |
[54] | Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505 |
[55] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685 |
[56] | Marzari N, Mostofi A A, Yates J R, Souza I, and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 |
[57] | Wu Q S, Zhang S N, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|