Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 125201    DOI: 10.1088/0256-307X/40/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Simulation Prediction of Heat Transport with Machine Learning in Tokamak Plasmas
Hui Li1*, Yan-Lin Fu2, Ji-Quan Li3, and Zheng-Xiong Wang1*
1Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
2State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
3Southwestern Institute of Physics, Chengdu 610041, China
Cite this article:   
Hui Li, Yan-Lin Fu, Ji-Quan Li et al  2023 Chin. Phys. Lett. 40 125201
Download: PDF(1663KB)   PDF(mobile)(1684KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Machine learning opens up new possibilities for research of plasma confinement. Specifically, models constructed using machine learning algorithms may effectively simplify the simulation process. Previous first-principles simulations could provide physics-based transport information, but not fast enough for real-time applications or plasma control. To address this issue, this study proposes SExFC, a surrogate model of the Gyro-Landau Extended Fluid Code (ExFC). As an extended version of our previous model ExFC-NN, SExFC can capture more features of transport driven by the ion temperature gradient mode and trapped electron mode, using an extended database initially generated with ExFC simulations. In addition to predicting the dominant instability, radially averaged fluxes and radial profiles of fluxes, the well-trained SExFC may also be suitable for physics-based rapid predictions that can be considered in real-time plasma control systems in the future.
Received: 06 July 2023      Published: 17 December 2023
PACS:  52.35.Kt (Drift waves)  
  52.35.Ra (Plasma turbulence)  
  52.65.-y (Plasma simulation)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/125201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/125201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Li
Yan-Lin Fu
Ji-Quan Li
and Zheng-Xiong Wang
[1] Humphreys D, Kupresanin A, Boyer M D, Canik J, Chang C S, Cyr E C, Granetz R, Hittinger J, Kolemen E, Lawrence E, Pascucci V, Patra A, and Schissel D 2020 J. Fusion Energy 39 123
[2] Degrave J, Felici F, Buchli J, Neunert M, Tracey B, Carpanese F, Ewalds T, Hafner R, Abdolmaleki A, de Casas D L, Donner C, Fritz L, Galperti C, Huber A, Keeling J, Tsimpoukelli M, Kay J, Merle A, Moret J M, Noury S, Pesamosca F, Pfau D, Sauter O, Sommariva C, Coda S, Duval B, Fasoli A, Kohli P, Kavukcuoglu K, Hassabis D, and Riedmiller M 2022 Nature 602 414
[3] Kates-Harbck J, Svyatkovskiy A, and Tang W 2019 Nature 568 526
[4] Joung S, Kim J, Kwak S, Bak J G, Lee S G, Han H S, Kim H S, Lee G, Kwon D, and Ghim Y C 2020 Nucl. Fusion 60 016034
[5] Abbate J, Conlin R, and Kolemen E 2021 Nucl. Fusion 61 046027
[6] Zheng W, Wu Q Q, Zhang M, Chen Z Y, Shang Y X, Fan J N, Pan Y, and Team J T 2020 Plasma Phys. Control. Fusion 62 045012
[7] Böckenhoff D, Blatzheim M, Hölbe H, Niemann H, Pisano F, Labahn R, Pedersen T S, and The W7-Team X 2018 Nucl. Fusion 58 056009
[8] Schmidhuber J 2015 Neural Networks 61 85
[9] Rea C, Montes K J, Erickson K G, Granetz R S, and Tinguely R A 2019 Nucl. Fusion 59 096016
[10] Citrin J, Breton S, Felici F, Imbeaux F, Aniel T, Artaud J F, Baiocchi B, Bourdelle C, Camenen Y, and Garcia J 2015 Nucl. Fusion 55 092001
[11] Meneghini O, Smith S P, Snyder P B, Staebler G M, Candy J, Belli E, Lao L, Kostuk M, Luce T, Luda T, Park J M, and Poli F 2017 Nucl. Fusion 57 086034
[12] Poli F M 2018 Phys. Plasmas 25 055602
[13] Doyle E J, Houlberg W A, Kamada Y, Mukhovatov V, Osborne T H, Polevoi A, Bateman G, Connor J W, Cordey J G, Fujita T, Garbet X, Hahm T S, Horton L D, Hubbard A E, Imbeaux F, Jenko F, Kinsey J E, Kishimoto Y, Li J, Luce T C, Martin Y, Ossipenko M, Parail V, Peeters A, Rhodes T L, Rice J E, Roach C M, Rozhansky V, Ryter F, Saibene G, Sartori R, Sips A C C, Snipes J A, Sugihara M, Synakowski E J, Takenaga H, Takizuka T, Thomsen K, Wade M R, Wilson H R, ITPA Transport Physics Topical Group, ITPA Confinement Database and Modelling Topical Group, and ITPA Pedestal and Edge Topical Group 2007 Nucl. Fusion 47 S18
[14] Horton W, Hu B, Dong J Q, and Zhu P 2003 New J. Phys. 5 14
[15] Allen L and Bishop C M 1992 Plasma Phys. Control. Fusion 34 1291
[16] Wakasa A, Murakami S, Itagaki M, and Oikawa S I 2007 Jpn. J. Appl. Phys. 46 1157
[17] Lister J B and Schnurrenberger H 1991 Nucl. Fusion 31 1291
[18] Clayton D J, Tritz K, Stutman D, Bell R E, Diallo A, LeBlanc B P, and Podestà M 2013 Plasma Phys. Control. Fusion 55 095015
[19] Svensson J, von Hellermann M, and König R W T 1999 Plasma Phys. Control. Fusion 41 315
[20] Vega J, Murari A, Dormido-Canto S, Moreno R, Pereira A, Acero A, and Contributors J E 2014 Nucl. Fusion 54 123001
[21] Dong G, Wei X, Bao J, Brochard G, Lin Z, and Tang W 2021 Nucl. Fusion 61 126061
[22] Liu Y Q, Lao L, Li L, and Turnbull A D 2020 Plasma Phys. Control. Fusion 62 045001
[23] Nordman H, Strand P, and Weiland J 2001 Plasma Phys. Control. Fusion 43 1765
[24] Li H, Li J Q, Fu Y L, Wang Z X, and Jiang M 2022 Nucl. Fusion 62 036014
[25]Beer M A 1995 Ph.D. Thesis (Princeton University)
[26] Garbet X, Garzotti L, Mantica P, Nordman H, Valovic M, Weisen H, and Angioni C 2003 Phys. Rev. Lett. 91 035001
[27] Garbet X, Dubuit N, Asp E, Sarazin Y, Bourdelle C, Ghendrih P, and Hoang G T 2005 Phys. Plasmas 12 082511
[28] Nordman H, Weiland J, and Jarmén A 1990 Nucl. Fusion 30 983
[29] Li H, Fu Y L, Li J Q, and Wang Z X 2021 Plasma Sci. Technol. 23 115102
[30] Ryter F, Angioni C, Peeters A G, Leuterer F, Fahrbach H U, and Suttrop P 2005 Phys. Rev. Lett. 95 085001
[31] Hoang G T, Bourdelle C, Garbet X, Giruzzi G, Aniel T, Ottaviani M, Horton W, Zhu P, and Budny R V 2001 Phys. Rev. Lett. 87 125001
[32] Baker D R et al. 2000 Nucl. Fusion 40 1003
[33] Garzotti L, Valovič M, Garbet X, Mantica P, and Parail V (JET EFDA Contributors) 2006 Nucl. Fusion 46 994
[34] Fröjdh M, Strand P, Weiland J, and Christiansen J 1996 Plasma Phys. Control. Fusion 38 325
Related articles from Frontiers Journals
[1] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 125201
[2] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 125201
[3] WANG Guan-Qiong, MA Jun, WEILAND J., ZAGORODNY A.. Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance[J]. Chin. Phys. Lett., 2015, 32(11): 125201
[4] CHEN Ran, XIE Jin-Lin**, YU Chang-Xuan, LIU A-Di, LAN Tao, ZHANG Shou-Biao, HU Guang-Hai, LI Hong, LIU Wan-Dong . Identification of Low-Frequency Zonal Flow in a Linear Magnetic Plasma Device[J]. Chin. Phys. Lett., 2011, 28(2): 125201
[5] PENG Li-Li, GAO Zhe. Effect of Elongation on Critical Gradient for Toroidal Electron Temperature Gradient Modes[J]. Chin. Phys. Lett., 2008, 25(11): 125201
[6] WANG Ying, GAO Zhe. Short Wavelength Ion Temperature Gradient Driven Instability in Noncircular Flux Surface Plasmas with Finite Aspect Ratio[J]. Chin. Phys. Lett., 2006, 23(8): 125201
[7] WANG Ai-Ke, H. Sanuki, DONG Jia-Qi, F. Zonca, K. Itoh. Magnetic Field Gradient and Curvature-Driven Drift Modes in Toroidal Plasmas[J]. Chin. Phys. Lett., 2004, 21(8): 125201
[8] Q. Haque, H. Saleem. Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma[J]. Chin. Phys. Lett., 2004, 21(5): 125201
[9] GAO Zhe. A New Kinetic Mode Driven by Electron Temperature Gradient[J]. Chin. Phys. Lett., 2004, 21(5): 125201
[10] SANG Hai-Bo, , HE Kai-Fen,. Phase Synchronization as a Mechanism of Controlling Spatiotemporal Chaos via External Periodic Signal[J]. Chin. Phys. Lett., 2004, 21(2): 125201
[11] PAN Yuan, YAN Xiao-Lin, LIU Bao-Hua. Electron Injection by E-Field Drift and its Application in Starting-up Tokamaks at Low Loop Voltage[J]. Chin. Phys. Lett., 2003, 20(5): 125201
[12] WANG Ai-Ke, QIU Xiao-Ming. Drift Mode Growth Rate and Associated Ion Thermal Transport in Reversed Magnetic Shear Tokamak Plasma [J]. Chin. Phys. Lett., 2001, 18(5): 125201
[13] WU Shun-Guang, SANG Hai-Bo, HE Kai-Fen,. Suppressing Spatiotemporal Chaos via Non-feedback Pinning Method[J]. Chin. Phys. Lett., 2001, 18(3): 125201
[14] QIU Xiao-ming, WANG Ai-ke. Model for Heat Pinch in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 1998, 15(10): 125201
[15] X.M.Qiu, L.Bai, L.B.Ran. Model on Inducing H-Mode by Biased Electrode in Tokamaks[J]. Chin. Phys. Lett., 1992, 9(10): 125201
Viewed
Full text


Abstract