Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 124301    DOI: 10.1088/0256-307X/40/12/124301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Unidirectional Negative Refraction at an Exceptional Point of Acoustic $PT$-Symmetric Systems
Chen Liu1,2, Jun Lan3, Zhongming Gu1*, and Jie Zhu1*
1Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
3College of Computer Science and Technology, Nanjing Tech University, Nanjing 211800, China
Cite this article:   
Chen Liu, Jun Lan, Zhongming Gu et al  2023 Chin. Phys. Lett. 40 124301
Download: PDF(10288KB)   PDF(mobile)(11152KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a method to realize unidirectional negative refraction in an acoustic parity-time ($PT$)-symmetric system, which is composed of a pair of metasurfaces sandwiching an air gap. The pair of metasurfaces possesses loss and gain modulations. The unidirectional negative refraction, which is strictly limited to the case of incident wave imposing on the loss end of the metasurface, is demonstrated at the exception point (EP) in this $PT$-symmetric system, while the incidence from the other side leads to strong reflection. Based on rigorous calculations, we explicitly show the underlying mechanism of this model to achieve unidirectional wave scatterings around the EP in the parametric space. In addition, the perfect imaging of a point source in the three-dimensional space, as a signature of negative refraction, is simulated to provide a verification of our work. We envision that this work may sharpen the understanding of $PT$-symmetric structures and inspire more acoustic functional devices.
Received: 07 September 2023      Published: 23 November 2023
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.20.El (Reflection, refraction, diffraction of acoustic waves)  
  43.20.Fn (Scattering of acoustic waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/124301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/124301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chen Liu
Jun Lan
Zhongming Gu
and Jie Zhu
[1] Cummer S A, Christensen J, and Alù A 2016 Nat. Rev. Mater. 1 16001
[2] Zhu X, Ramezani H, Shi C, Zhu J, and Zhang X 2014 Phys. Rev. X 4 031042
[3] Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, and Chen Y F 2020 Adv. Mater. 32 1903639
[4] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[5] Bender C M, Brody D C, and Jones H F 2002 Phys. Rev. Lett. 89 270401
[6] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, and Kip D 2010 Nat. Phys. 6 192
[7] Fleury R, Sounas D L, andf Alù A 2014 Phys. Rev. Lett. 113 023903
[8] Monticone F, Valagiannopoulos C A, and Alù A 2016 Phys. Rev. X 6 041018
[9] Valagiannopoulos C A, Monticone F, and Alù A 2016 J. Opt. 18 044028
[10] Feng L, El-Ganainy R, and Ge L 2017 Nat. Photonics 11 752
[11] Zhao H and Feng L 2018 Natl. Sci. Rev. 5 183
[12] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11
[13] Özdemir Ş K, Rotter S, Nori F, and Yang L 2019 Nat. Mater. 18 783
[14] Peng B, Özdemir Ş K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F, and Yang L 2014 Science 346 328
[15] Luo J, Li J, and Lai Y 2018 Phys. Rev. X 8 031035
[16] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[17] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, and Scherer A 2013 Nat. Mater. 12 108
[18] Ramezani H, Li H K, Wang Y, and Zhang X 2014 Phys. Rev. Lett. 113 263905
[19] Sounas D L, Fleury R, and Alù A 2015 Phys. Rev. Appl. 4 014005
[20] Zhao H, Fegadolli W S, Yu J, Zhang Z F, Ge L, Scherer A, and Feng L 2016 Phys. Rev. Lett. 117 193901
[21] Chong Y D, Ge L, Cao H, and Stone A D 2010 Phys. Rev. Lett. 105 053901
[22] Sun Y, Tan W, Li H Q, Li J, and Chen H 2014 Phys. Rev. Lett. 112 143903
[23] Longhi S 2010 Phys. Rev. A 82 031801
[24] Chong Y D, Ge L, and Stone A D 2011 Phys. Rev. Lett. 106 093902
[25] Ge L, Chong Y D, and Stone A D 2012 Phys. Rev. A 85 023802
[26] Longhi S and Feng L 2014 Opt. Lett. 39 5026
[27] Bai P, Ding K, Wang G, Luo J, Zhang Z Q, Chan C T, Wu Y, and Lai Y 2016 Phys. Rev. A 94 063841
[28] Wong Z J, Xu Y L, Kim J, O'Brien K, Wang Y, Feng L, and Zhang X 2016 Nat. Photonics 10 796
[29] Sakhdari M, Farhat M, and Chen P Y 2017 New J. Phys. 19 065002
[30] Zhu W W, Fang X S, Li D T, Sun Y, Li Y, Jing Y, and Chen H 2018 Phys. Rev. Lett. 121 124501
[31] Liu T, Zhu X F, Chen F, Liang S J, and Zhu J 2018 Phys. Rev. Lett. 120 124502
[32] Chen H Z, Liu T, Luan H Y, Liu R J, Wang X Y, Zhu X F, Li Y B, Gu Z M, Liang S J, Gao H, Lu L, Ge L, Zhang S, Zhu J, and Ma R M 2020 Nat. Phys. 16 571
[33] Liu T, Ma G C, Liang S, Gao H, Gu Z M, An S W, and Zhu J 2020 Phys. Rev. B 102 014306
[34] Gu Z M, Gao H, Cao P C, Liu T, Zhu X F, and Zhu J 2021 Phys. Rev. Appl. 16 057001
[35] Liu T, An S W, Gu Z M, Liang S J, Gao H, Ma G C, and Zhu J 2022 Sci. Bull. 67 1131
[36] Li H X, Rosendo-López M, Zhu Y F, Fan X D, Torrent D, Liang B, Cheng J C, and Christensen J 2019 Research 2019 8345683
[37] An S W, Liu T, Liang S J, Gao H, Gu Z M, and Zhu J 2021 J. Appl. Phys. 129 175106
[38] Zhang H X, Zhang Y W, Liu X L, Bao Y, and Zhao J Y 2022 Phys. Rev. B 106 094101
[39] Yang Y Z, Jia H, Bi Y F, Zhao H, and Yang J 2019 Phys. Rev. Appl. 12 034040
[40] Wang X, Fang X S, Mao D X, Jing Y, and Li Y 2019 Phys. Rev. Lett. 123 214302
[41] Gu Z M, Gao H, Liu T, Liang S J, An S W, Li Y, and Zhu J 2021 Phys. Rev. Appl. 15 014025
[42] Gu Z M, Liu T, Gao H, Liang S J, An S W, and Zhu J 2021 J. Appl. Phys. 129 234901
[43] Zhang H X, Xiong W, Cheng Y, and Liu X J 2022 Chin. Phys. B 31 124301
[44] Quan J Q, Gao L, Jiang J H, and Xu Y 2023 J. Appl. Phys. 133 074504
[45] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[46] Liang Z X, and Li J S 2012 Phys. Rev. Lett. 108 114301
[47] Xie Y B, Popa B I, Zigoneanu L, and Cummer S A 2013 Phys. Rev. Lett. 110 175501
[48] Lan J, Zhang X W, Wang L W, Lai Y, and Liu X Z 2020 Sci. Rep. 10 10794
[49] Popa B I and Cummer S A 2014 Nat. Commun. 5 3398
[50] Fleury R, Sounas D, and Alù A 2015 Nat. Commun. 6 5905
[51] Shi C Z, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, and Zhang X 2016 Nat. Commun. 7 11110
[52] Aurégan Y and Pagneux V 2017 Phys. Rev. Lett. 118 174301
[53] Hu B L, Zhang Z W, Zhang H X, Zheng L Y, Xiong W, Yue Z C, Wang X Y, Xu J Y, Cheng Y, Liu X J, and Christensen J 2021 Nature 597 655
[54] Hu B L, Zhang Z W, Yue Z C, Liao D W, Liu Y M, Zhang H X, Cheng Y, Liu X J, and Christensen J 2023 Phys. Rev. Lett. 131 066601
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 124301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 124301
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 124301
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 124301
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 124301
[6] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 124301
[7] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 124301
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 124301
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 124301
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 124301
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 124301
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 124301
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 124301
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 124301
[15] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 124301
Viewed
Full text


Abstract