FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Introduction of Asymmetry to Enhance Thermal Transport in Porous Metamaterials at Low Temperature |
Yu Yang, Dengke Ma, and Lifa Zhang* |
Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China |
|
Cite this article: |
Yu Yang, Dengke Ma, and Lifa Zhang 2023 Chin. Phys. Lett. 40 124401 |
|
|
Abstract Introducing porosity with different degrees of disorder has been widely used to regulate thermal properties of materials, which generally results in decrease of thermal conductivity. We investigate the thermal conductivity of porous metamaterials in the ballistic transport region by using the Lorentz gas model. It is found that the introduction of asymmetry and Gaussian disorder into porous metamaterials can lead to a strong enhancement of thermal conductivity. By dividing the transport process into ballistic transport, non-ballistic transport, and unsuccessful transport processes, we find that the enhancement of thermal conductivity originates from the significant increase ballistic transport ratio. The findings enhance the understanding of ballistic thermal transport in porous materials and may facilitate designs of high-performance porous thermal metamaterials.
|
|
Received: 30 August 2023
Published: 29 November 2023
|
|
PACS: |
05.60.-k
|
(Transport processes)
|
|
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
|
44.10.+i
|
(Heat conduction)
|
|
44.30.+v
|
(Heat flow in porous media)
|
|
61.43.-j
|
(Disordered solids)
|
|
|
|
|
[1] | Waldrop M M 2016 Nature 530 144 |
[2] | Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045 |
[3] | Sklan S R and Li B W 2018 Natl. Sci. Rev. 5 138 |
[4] | Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H, and Qiu C W 2021 Nat. Rev. Mater. 6 488 |
[5] | Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907 |
[6] | Yang Y, Chen H Y, Wang H, Li N B, and Zhang L F 2018 Phys. Rev. E 98 042131 |
[7] | Yang Y, Ma D K, Zhao Y S, and Zhang L F 2020 J. Appl. Phys. 127 195301 |
[8] | Li B W, Wang L, and Casati G 2004 Phys. Rev. Lett. 93 184301 |
[9] | Li B W, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501 |
[10] | Yu J K, Mitrovic S, Tham D, Varghes J, and Heath J R 2010 Nat. Nanotechnol. 5 718 |
[11] | Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z F, Fitzgerald E A, and Chen G 2012 Science 338 936 |
[12] | Yu C Q, Ouyang Y L, and Chen J 2022 Front. Phys. 17 53507 |
[13] | Jiang J H, Lu S, and Chen J 2023 Chin. Phys. Lett. 40 096301 |
[14] | Maldovan M 2013 Phys. Rev. Lett. 110 025902 |
[15] | Maldovan M 2015 Nat. Mater. 14 667 |
[16] | Wang H D, Hu S Q, Takahashi K, Zhang X, Takamatsu H, and Chen J 2017 Nat. Commun. 8 15843 |
[17] | Song D and Chen G 2004 Appl. Phys. Lett. 84 687 |
[18] | Hopkins P E, Reinke C M, Su M F, Olsson I R H, Shaner E A, Leseman Z C, Serrano J R, Phinney L M, and El-kady I 2011 Nano Lett. 11 107 |
[19] | Yang L N, Yang N, and Li B W 2014 Nano Lett. 14 1734 |
[20] | Alaie S, Goettler D F, Su M, Leseman Z C, Reinke C M, and El-Kady I 2015 Nat. Commun. 6 7228 |
[21] | Feng T L and Ruan X L 2016 Carbon 101 107 |
[22] | Zhao Y S, Yang L N, Kong L Y, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B W, Thong J T L, and Hippalgaonkar K 2017 Adv. Funct. Mater. 27 1702824 |
[23] | Wagner M R, Graczykowski B, Reparaz J S, Sachat A E, Sledzinska M, Alzina F, and Torres C M S 2016 Nano Lett. 16 5661 |
[24] | Anufriev R, Ramiere A, Maire J, and Nomura M 2017 Nat. Commun. 8 15505 |
[25] | Oh J, Yoo H, Choi J, Kim J Y, Lee D S, Kim M J, Lee J C, Kim W N, Grossman J C, Park J H, Lee S S, Kim H, and Son J G 2017 Nano Energy 35 26 |
[26] | Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, and Li B W 2018 J. Phys. Chem. Lett. 9 3959 |
[27] | Sledzinska M, Graczykowski B, Alzina F, Melia U, Termentzidis K, Lacroix D, and Torres C M S 2019 Nanotechnology 30 265401 |
[28] | Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, and Chen J 2019 Nanoscale 11 11839 |
[29] | Kasprzak M, Sledzinska M, Zaleski K, Iatsunskyi I, Alzina F, Volz S, Torres C M S, and Graczykowski B 2020 Nano Energy 78 105261 |
[30] | Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S, and Nomura M 2017 Sci. Adv. 3 e1700027 |
[31] | Wei H, Bao H, and Ruan X L 2020 Nano Energy 71 104619 |
[32] | Yang Y, Zhao Y S, and Zhang L F 2023 Appl. Phys. Lett. 122 144102 |
[33] | Lorentz H A 1905 Proc. K. Ned. Akad. Wet. 7 438 |
[34] | Sinai Y G 1979 Funct. Anal. Appl. 13 192 |
[35] | Bunimovich L A and Sinai Y G 1980 Commun. Math. Phys. 78 247 |
[36] | Bunimovich L A and Sinai Y G 1981 Commun. Math. Phys. 78 479 |
[37] | Oliveira D F M, Vollmer J, and Leonel E D 2011 Phys. D (Amsterdam) 240 389 |
[38] | Moran B, Hoover W G, and Bestiale S 1987 J. Stat. Phys. 48 709 |
[39] | Larralde H, Leyvraz F, and Mejia-Monasterio C 2003 J. Stat. Phys. 113 197 |
[40] | Alonso D, Artuso R, Casati G, and Guarneri I 1999 Phys. Rev. Lett. 82 1859 |
[41] | Li B W, Casati G, and Wang J 2003 Phys. Rev. E 67 021204 |
[42] | Chen H Y, Wang H, Yang Y, Li N B, and Zhang L F 2018 Phys. Rev. E 98 032131 |
[43] | Casati G, Mejia-Monasterio C, and Prosen T 2007 Phys. Rev. Lett. 98 104302 |
[44] | Chen H Y, Yang Y, Yu Z Z, Zhong M, and Zhang L F 2020 Phys. Rev. E 101 042129 |
[45] | Yang Y, Li X L, and Zhang L F 2021 Chin. Phys. Lett. 38 016601 |
[46] | Wu Y C, Yang Y, Lu L K, Wang T T, Xu L, Yu Z Z, and Zhang L F 2021 Phys. Rev. E 103 052135 |
[47] | Wang H, Yang Y, Chen H Y, Li N B, and Zhang L F 2019 Phys. Rev. E 99 062111 |
[48] | Wang T T, Yang Y, Wu Y C, Xu L, Ma D K, and Zhang L F 2021 Phys. Rev. E 104 024801 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|