NUCLEAR PHYSICS |
|
|
|
|
Phase Transition Study Meets Machine Learning |
Yu-Gang Ma1,2*, Long-Gang Pang3*, Rui Wang1,4,5*, and Kai Zhou6* |
1Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), and Institute of Modern Physics, Fudan University, Shanghai 200433, China 2Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China 3Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan 430079, China 4Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 5INFN Sezione di Catania, 95123 Catania, Italy 6Frankfurt Institute for Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany
|
|
Cite this article: |
Yu-Gang Ma, Long-Gang Pang, Rui Wang et al 2023 Chin. Phys. Lett. 40 122101 |
|
|
Abstract In recent years, machine learning (ML) techniques have emerged as powerful tools for studying many-body complex systems, and encompassing phase transitions in various domains of physics. This mini review provides a concise yet comprehensive examination of the advancements achieved in applying ML to investigate phase transitions, with a primary focus on those involved in nuclear matter studies.
|
|
Received: 10 October 2023
Review
Published: 06 December 2023
|
|
PACS: |
21.65.-f
|
(Nuclear matter)
|
|
21.65.Mn
|
(Equations of state of nuclear matter)
|
|
21.65.Qr
|
(Quark matter)
|
|
07.05.Mh
|
(Neural networks, fuzzy logic, artificial intelligence)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
|
|
|
[1] | Aarts G et al. 2023 Prog. Part. Nucl. Phys. 133 104070 |
[2] | Bzdak A, Esumi S, Koch V, Stephanov M, and Xu N 2020 Phys. Rep. 853 1 |
[3] | Pochodzalla J, Möhlenkamp T, Rubehn T et al. 1995 Phys. Rev. Lett. 75 1040 |
[4] | Ma Y G 1999 Phys. Rev. Lett. 83 3617 |
[5] | Natowitz J B, Hagel K, Ma Y G et al. 2002 Phys. Rev. Lett. 89 212701 |
[6] | Natowitz J B, Wada R, Hagel K, Keutgen T, Murray M, Makeev A, Smith P, and Hamilton C 2002 Phys. Rev. C 65 034618 |
[7] | Ma Y G, Natowitz J B, Wada R et al. 2005 Phys. Rev. C 71 054606 |
[8] | Liu C, Deng X G, and Ma Y G 2022 Nucl. Sci. Tech. 33 52 |
[9] | Borderie B and Frankland J 2019 Prog. Part. Nucl. Phys. 105 82 |
[10] | Deng X G, Danielewicz P, Lin H, and Zhang Y X 2022 Phys. Rev. C 105 064613 |
[11] | Fukushima K and Hatsuda T 2011 Rep. Prog. Phys. 74 014001 |
[12] | Sáiz Á, García-Ramos J E, Arias J M, Lamata L, and Pérez-Fernández P 2022 Phys. Rev. C 106 064322 |
[13] | Li X B, Guo R R, Zhou Y et al. 2023 Chin. Phys. C 47 034101 |
[14] | He W B, Ma Y G, Pang L G, Song H C, and Zhou K 2023 Nucl. Sci. Tech. 34 88 |
[15] | Li F, Pang L G, and Wang X N 2023 Nucl. Tech. 46 040014 (in Chinese) |
[16] | He W B, Li Q F, Ma Y G, Niu Z M, Pei J C, and Zhang Y X 2023 Sci. Chin. Phys. Mech. & Astron. 66 282001 |
[17] | Li P, Bai J H, Niu Z M, and Niu Y F 2022 Sci. Sin. Phys. Mech. Astron. 52 252006 |
[18] | Wu Z H, Bai J J, Zhang D D et al. 2021 Nucl. Sci. Tech. 32 54 |
[19] | Liang J M, Wei S J, and Fei S M 2022 Sci. Chin. Phys. Mech. & Astron. 65 250313 |
[20] | Zhang Z Y, Ma R, Hu J F, and Wang Q 2022 Chin. Phys. Lett. 39 111201 |
[21] | Li Y Y, Zhang F, and Su J 2022 Nucl. Sci. Tech. 33 135 |
[22] | He L D, Guo H W, Jin Y B, Zhuang X Y, Rabczuk T, and Li Y 2022 Sci. Chin. Phys. Mech. & Astron. 65 214612 |
[23] | Li Z Y, Qian Z, He J H et al. 2022 Nucl. Sci. Tech. 33 93 |
[24] | Bai S C, Tang Y C, and Ran S J 2022 Chin. Phys. Lett. 39 100701 |
[25] | Ming X C, Zhang H F, Xu R R et al. 2022 Nucl. Sci. Tech. 33 48 |
[26] | Gao X, Sun J, Wan X G, and Li G 2022 Chin. Phys. Lett. 39 077101 |
[27] | Gao Z P, Wang Y J, and Lü H L et al. 2021 Nucl. Sci. Tech. 32 109 |
[28] | Arahmane H, Hamzaoui E M, Maissa Y B, and El Moursli R C 2022 Nucl. Sci. Tech. 32 18 |
[29] | Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 |
[30] | van Nieuwenburg E P L, Liu Y H, and Huber S D 2017 Nat. Phys. 13 435 |
[31] | Wetzel S J 2017 Phys. Rev. E 96 022140 |
[32] | Hu W J, Singh R R P, and Scalettar R T 2017 Phys. Rev. E 95 062122 |
[33] | Kelić A, Natowitz J B, and Schmidt K H 2006 Eur. Phys. J. A 30 203 |
[34] | Song Y D, Wang R, Ma Y G, Deng X G, and Liu H L 2021 Phys. Lett. B 814 136084 |
[35] | Ma Y G and Zhang S 2022 Influence of Nuclear Structure in Relativistic Heavy-Ion Collisions. In: Tanihata I, Toki H, and Kajino T (eds) Handbook of Nuclear Physics (Singapore: Springer) pp 1–30 |
[36] | Wang Y Z, Zhang S, and Ma Y G 2022 Phys. Lett. B 831 137198 |
[37] | Wang S S, Ma Y G, He W B, Fang D Q, and Cao X G 2023 Phys. Rev. C 108 014609 |
[38] | Shi C Z and Ma Y G 2021 Nucl. Sci. Tech. 32 66 |
[39] | Ma Y G 2023 Nucl. Tech. 46 080001 (in Chinese) |
-clustering structure on nuclear reaction and relativistic heavy-ion collisions||
[40] | Cao Y T, Deng X G, and Ma Y G 2023 Phys. Rev. C 108 024610 |
[41] | Wang R, Ma Y G, Wada R, Chen L W, Liu H L, and Sun K J 2020 Phys. Rev. Res. 2 043202 |
[42] | Wada R, Lin W, Ren P, Zheng H, Liu X, Huang M, Yang K, and Hagel K 2019 Phys. Rev. C 99 024616 |
[43] | Wu Y, Li X B, Chen L et al. 2023 Nucl. Tech. 46 040006 (in Chinese) |
[44] | Zhang Y, Zhang D, and Luo X 2023 Nucl. Tech. 46 040001 (in Chinese) |
[45] | Sun K J, Chen L W, Ko C M, Xu J, and Xu Z 2023 Nucl. Tech. 46 040012 (in Chinese) |
[46] | Chen Q, Ma G L, and Chen J H 2023 Nucl. Tech. 46 040013 (in Chinese) |
[47] | Pang L G, Zhou K, Su N, Petersen H, Stöcker H, and Wang X N 2018 Nat. Commun. 9 210 |
[48] | Du Y L, Zhou K, Steinheimer J, Pang L G, Motornenko A, Zong H S, Wang X N, and Stöcker H 2020 Eur. Phys. J. C 80 516 |
[49] | Steinheimer J, Pang L G, Zhou K, Koch V, Randrup J, and Stöcker H 2019 J. High Energy Phys. 2019(12) 122 |
[50] | Kuttan M O, Zhou K, Redelbach A, and Stöcker H 2020 J. High Energy Phys. 2021(10) 184 |
[51] | An R, Sun S, Cao L G, and Zhang F S 2023 Nucl. Sci. Tech. 34 119 |
[52] | Li P C, Wang Y J, Li Q F, and Zhang H F 2023 Sci. Chin. Phys. Mech. & Astron. 66 222011 |
[53] | Xu J F, Xia C J, Lu Z Y, Peng G X, and Zhao Y P 2022 Nucl. Sci. Tech. 33 143 |
[54] | Wang Y J, Li F P, Li Q F, Lü H L, and Zhou K 2021 Phys. Lett. B 822 136669 |
[55] | Kuttan M O, Steinheimer J, Zhou K, and Stöcker H 2023 Phys. Rev. Lett. 131 202303 |
[56] | Soma S, Wang L, Shi S, Stöcker H, and Zhou K 2023 Phys. Rev. D 107 083028 |
[57] | Zhou K, Endrödi G, Pang L G, and Stöcker H 2019 Phys. Rev. D 100 011501 |
[58] | Wang L X, Jiang Y, He L Y, and Zhou K 2022 Chin. Phys. Lett. 39 120502 |
[59] | Albergo M S, Kanwar G, and Shanahan P E 2019 Phys. Rev. D 100 034515 |
[60] | Kanwar G, Albergo M S, Boyda D, Cranmer K, Hackett D C, Racanière S, Rezende D J, and Shanahan P E 2020 Phys. Rev. Lett. 125 121601 |
[61] | Abbott R et al. 2023 Prog. Sci. LATTICE2022 036 |
[62] | Chen S L, Savchuk O, Zheng S Q, Chen B Y, Stoecker H, Wang L X, and Zhou K 2023 Phys. Rev. D 107 056001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|