Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 124201    DOI: 10.1088/0256-307X/40/12/124201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Modifying the Electron Dynamics in High-Order Harmonic Generation via a Two-Color Laser Field
Cai-Ping Zhang1,2 and Xiang-Yang Miao1,2*
1College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
2Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China
Cite this article:   
Cai-Ping Zhang and Xiang-Yang Miao 2023 Chin. Phys. Lett. 40 124201
Download: PDF(5546KB)   PDF(mobile)(5554KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the harmonic emission from bichromatic periodic potential by numerically solving the time-dependent Schrödinger equation in the velocity gauge. The results show that the harmonic minimum is sensitive to the wavelength. Moreover, distinct crystal momentum states contribute differently to harmonic generation. In momentum space, the electron dynamics reveal a close relationship between the spectral minimum and the electron distribution in higher conduction bands. Additionally, by introducing an ultraviolet pulse to the fundamental laser field, the suppression of the harmonic minimum occurs as a result of heightened electron populations in higher conduction bands. This work sheds light on the harmonic emission originating from a solid with a two-atom basis.
Received: 16 July 2023      Published: 27 November 2023
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/124201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/124201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cai-Ping Zhang and Xiang-Yang Miao
[1] Corkum P B and Krausz F 2007 Nat. Phys. 3 381
[2] Peng Z Y, Lang Y, Zhu Y L, Zhao J, Zhang D W, Zhao Z X, and Yuan J M 2023 Chin. Phys. Lett. 40 054203
[3] Miao X Y and Zhang C P 2014 Phys. Rev. A 89 033410
[4] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M, and Krausz F 2001 Nature 414 509
[5] Miao X Y and Du H N 2013 Phys. Rev. A 87 053403
[6] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, and Reis A D 2011 Nat. Phys. 7 138
[7] You Y S, Reis D A, and Ghimire S 2017 Nat. Phys. 13 345
[8] Du T Y and Ma C 2022 Phys. Rev. A 105 053125
[9] Li J, Lu A, Chew A, Han S, Li J, Wu Y, Wang H, Ghimire S, and Chang Z 2020 Nat. Commun. 11 2748
[10] Wu T, Qian C, Wang Z, Zhang X, Yu C, and Lu R 2022 Acta Photon. Sin. 51 0851515 (in Chinese)
[11] Wu M T, You Y S, Ghimire S, Reis D A, Browne D A, Schafer K J, and Gaarde M B 2017 Phys. Rev. A 96 063412
[12] Vampa G, Hammond T J, Thire N, Schmidt B E, Legare F, McDonald C R, Brabec T, Klug D D, and Corkum P B 2015 Phys. Rev. Lett. 115 193603
[13] Li L, Lan P F, He L X, Cao W, Zhang Q B, and Lu P X 2020 Phys. Rev. Lett. 124 157403
[14] Yu C, Jiang S, Wu T, Yuan G, Wang Z, Jin C, and Lu R 2018 Phys. Rev. B 98 085439
[15] Luu T T and Wörner H J 2018 Nat. Commun. 9 916
[16] Liu H Z, Li Y L, You Y S, Ghimire S, Heinz T F, and Reis D A 2017 Nat. Phys. 13 262
[17] Langer F, Hohenleutner M, Huttner U, Koch S W, Kira M, and Huber R 2017 Nat. Photonics 11 227
[18] Kong X S, Liang H, Wu X Y, and Peng L Y 2021 J. Phys. B 54 124004
[19] You Y S, Yin Y C, Wu Y, Chew A, Ren X M, Zhuang F J, Gholam-Mirzaei S, Chini M, Chang Z H, and Ghimire S 2017 Nat. Commun. 8 724
[20] Yu C, Jiang S, and Lu R F 2019 Adv. Phys.: X 4 1562982
[21] Wu M X, Browne D A, Schafer K J, and Gaarde M B 2016 Phys. Rev. A 94 063403
[22] Shao J, Zhang C P, Jia J C, Ma J L, and Miao X Y 2019 Chin. Phys. Lett. 36 054203
[23] Du T Y 2021 Phys. Rev. A 104 063110
[24] Liu X, Zhu X, Lan P, Zhang X, Wang D, Zhang Q, and Lu P 2017 Phys. Rev. A 95 063419
[25] Pattanayak A, Mrudul M S, and Dixit G 2020 Phys. Rev. A 101 013404
[26] Jia G R, Huang X H, and Bian X B 2017 Opt. Express 25 23654
[27] Li J B, Zhang X, Yue S J, Wu H M, Hu B T, and Du H C 2017 Opt. Express 25 18603
[28] Pan X F, Li B, Qi T, Zhang J, and Liu X S 2021 J. Phys. B 54 025601
[29] Mrudul M S, Pattanayak A, Ivanov M, and Dixit G 2019 Phys. Rev. A 100 043420
[30] Fan J G, Li X Y, Jia X F, and Miao X Y 2022 Chem. Phys. Lett. 787 139201
[31] He X L, Guo J, Gao F Y, Yang Z J, Zhang S Q, and Liu X S 2021 Phys. Rev. A 104 013104
[32] Liu X, Li Y, Liu D, Zhu X, Zhang X, and Lu P 2021 Phys. Rev. A 103 033104
[33] Wang X Q and Bian X B 2021 Phys. Rev. A 103 053106
[34] Li J B, Fu S L, Wang H Q, Zhang X, Ding B W, Hu B T, and Du H C 2018 Phys. Rev. A 98 043409
[35] Du T Y and Bian X B 2017 Opt. Express 25 151
[36] Sun N, Zhu X, Li L, Lan P, and Lu P 2021 Phys. Rev. A 103 053111
[37] Navarrete F and Thumm U 2020 Phys. Rev. A 102 063123
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, and Zengxiu Zhao. Twin-Capture Rydberg State Excitation Enhanced with Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2024, 41(1): 124201
[2] Kai Hu, Yujie Qin, Liang Cheng, Youguo Shi, and Jingbo Qi. Giant Nonlinear Optical Response in Topological Semimetal Molybdenum Phosphide[J]. Chin. Phys. Lett., 2023, 40(11): 124201
[3] Shi-Qi Hu and Sheng Meng. Ultrafast Condensed Matter Physics at Attoseconds[J]. Chin. Phys. Lett., 2023, 40(11): 124201
[4] Zhaoyang Peng, Huayu Hu, Zengxiu Zhao, and Jianmin Yuan. Quantum Optical Description of Radiation by a Two-Level System in Strong Laser Fields[J]. Chin. Phys. Lett., 2023, 40(5): 124201
[5] Zhaoyang Peng, Yue Lang, Yalei Zhu, Jing Zhao, Dongwen Zhang, Zengxiu Zhao, and Jianmin Yuan. Crystal-Momentum-Resolved Contributions to Harmonics in Laser-Driven Graphene[J]. Chin. Phys. Lett., 2023, 40(5): 124201
[6] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 124201
[7] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 124201
[8] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 124201
[9] Xiaoli Guo, Cheng Jin, Ziqiang He, Song-Feng Zhao, Xiao-Xin Zhou, and Ya Cheng. Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules[J]. Chin. Phys. Lett., 2021, 38(12): 124201
[10] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 124201
[11] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 124201
[12] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 124201
[13] Jing-Jie Hao, Wei Tu, Nan Zong, Yu Shen, Shen-Jin Zhang, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser[J]. Chin. Phys. Lett., 2020, 37(4): 124201
[14] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 124201
[15] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 124201
Viewed
Full text


Abstract