Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 120401    DOI: 10.1088/0256-307X/40/12/120401
GENERAL |
Entropy of Regular Black Holes in Einstein's Gravity
Chen Lan1 and Yan-Gang Miao2*
1Department of Physics, Yantai University, Yantai 264005, China
2School of Physics, Nankai University, Tianjin 300071, China
Cite this article:   
Chen Lan and Yan-Gang Miao 2023 Chin. Phys. Lett. 40 120401
Download: PDF(386KB)   PDF(mobile)(405KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We calculate the entropy of spherically symmetric regular black holes by the path-integral method in Einstein's gravity. This method provides evidence that the entropy of spherically symmetric regular black holes is proportional to a quarter of horizon area, indicating no violation of the entropy-area law.
Received: 15 August 2023      Published: 23 November 2023
PACS:  04.70.-s (Physics of black holes)  
  04.70.Bw (Classical black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  03.65.Db (Functional analytical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/120401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/120401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chen Lan and Yan-Gang Miao
[1] Bekenstein J D 1972 Lett. Nuovo Cimento 4 737
[2] Bekenstein J D 1973 Phys. Rev. D 7 2333
[3] Dyer E and Hinterbichler K 2009 Phys. Rev. D 79 024028
[4] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451
[5] Wald R M 1993 Phys. Rev. D 48 R3427
[6] Jacobson T, Kang G, and Myers R C 1994 Phys. Rev. D 49 6587
[7] Brustein R, Gorbonos D, and Hadad M 2009 Phys. Rev. D 79 044025
[8] Querella L 1998 arXiv:gr-qc/9806005
[9] Gover A R and Nurowski P 2006 J. Geom. Phys. 56 450
[10] Myers R C and Simon J Z 1998 Phys. Rev. D 38 2434
[11] Lan C, Yang H, Guo Y, and Miao Y G 2023 Int. J. Theor. Phys. 62 202
[12] Bronnikov K A, Melnikov V N, and Dehnen H 2007 Gen. Relativ. Gravit. 39 973
[13] Ansoldi S 2008 arXiv:0802.0330 [gr-qc]
[14] Zaslavskii O B 2010 Phys. Lett. B 688 278
[15]Markov M A 1982 JETP Lett. 36 266
[16] Zakhary E and Mcintosh C B G 1997 Gen. Relativ. Gravit. 29 539
[17] Zhang Y and Gao S 2018 Class. Quantum Grav. 35 145007
[18] Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2752
[19] Myung Y S, Kim Y W, and Park Y J 2007 Phys. Lett. B 656 221
[20] Myung Y S and Yoon M 2009 Eur. Phys. J. C 62 405
[21] Spallucci E, Smailagic A, and Nicolini P 2009 Phys. Lett. B 670 449
[22] Nam C H 2018 Eur. Phys. J. C 78 581
[23] Naveena Kumara A, Rizwan C L A, Hegde K, and Ajith K M, 2020 Phys. Lett. B 807 135556
[24]Petrov A Z 1961 Einstein Spacetime (Moscow: Fizmatlit) (in Russian)
[25] Fan Z Y and Wang X 2016 Phys. Rev. D 94 124027
[26] Bronnikov K A and Fabris J C 2006 Phys. Rev. Lett. 96251101
[27] Bronnikov K A, Rybakov Y P, and Saha B 2020 Eur. Phys. J. Plus 135 124
[28] Saha B 2006 Phys. Rev. D 74 124030
[29] Saha B 2018 Eur. Phys. J. Plus 133 461
[30] Simpson A and Visser M 2019 J. Cosmol. Astropart. Phys. 2019(02) 42
[31] Bronnikov K A and Walia R K 2022 Phys. Rev. D 105 044039
[32] Hu H W, Lan C, and Miao Y G 2023 Eur. Phys. J. C 83 1047
[33]Kiefer C 2012 Quantum Gravity 3nd edn (Oxford: Oxford University Press)
[34] Poisson E 2009 A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge: Cambridge University Press) p. 12
[35] Ayon-Beato E and Garcia A 1998 Phys. Rev. Lett. 80 5056
[36] Ayon-Beato E and Garcia A 2000 Phys. Lett. B 493 149
[37] Mann R B and Nicolini P 2011 Phys. Rev. D 84 064014
[38] Lan C, Miao Y G, and Yang H 2021 Nucl. Phys. B 971 115539
[39]Gliner E B 1966 Sov. Phys.-JETP 22 378
[40] Christodoulou D 1970 Phys. Rev. Lett. 25 1596
[41] Lan C and Miao Y G 2022 Eur. Phys. J. C 82 1152
[42] Toshmatov B, Bambi C, Ahmedov B, Abdujabbarov A, and Stuchlík Z 2017 Eur. Phys. J. C 77 542
Related articles from Frontiers Journals
[1] Ren Zhang, Chenwei Lv, and Qi Zhou. Analogue Black Holes in Reactive Molecules[J]. Chin. Phys. Lett., 2023, 40(5): 120401
[2] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 120401
[3] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 120401
[4] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 120401
[5] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 120401
[6] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 120401
[7] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 120401
[8] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 120401
[9] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 120401
[10] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 120401
[11] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 120401
[12] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 120401
[13] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 120401
[14] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 120401
[15] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 120401
Viewed
Full text


Abstract