GENERAL |
|
|
|
|
New Painlevé Integrable (3+1)-Dimensional Combined pKP–BKP Equation: Lump and Multiple Soliton Solutions |
Abdul-Majid Wazwaz* |
Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA |
|
Cite this article: |
Abdul-Majid Wazwaz 2023 Chin. Phys. Lett. 40 120501 |
|
|
Abstract We introduce a new form of the Painlevé integrable (3+1)-dimensional combined potential Kadomtsev–Petviashvili equation incorporating the B-type Kadomtsev–Petviashvili equation (pKP–BKP equation). We perform the Painlevé analysis to emphasize the complete integrability of this new (3+1)-dimensional combined integrable equation. We formally derive multiple soliton solutions via employing the simplified Hirota bilinear method. Moreover, a variety of lump solutions are determined. We also develop two new (3+1)-dimensional pKP–BKP equations via deleting some terms from the original form of the combined pKP–BKP equation. We emphasize the Painlevé integrability of the newly developed equations, where multiple soliton solutions and lump solutions are derived as well. The derived solutions for all examined models are all depicted through Maple software.
|
|
Received: 26 September 2023
Published: 06 December 2023
|
|
PACS: |
05.45.Yv
|
(Solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
|
|
|
[1] | Ma W X 2021 J. Geom. Phys. 165 104191 |
[2] | Feng Y Y and Bilige S 2021 J. Geom. Phys. 169 104322 |
[3] | Ma Z Y, Fei J X, Cao W P, and Wu H L 2022 Results Phys. 35 105363 |
[4] | Tariq K U, Wazwaz A M, and Tufail R N 2022 Eur. Phys. J. Plus 137 1100 |
[5] | Ma H C, Yue S P, and Deng A P 2022 Mod. Phys. Lett. B 36 2250069 |
[6] | Weiss J, Tabor M, and Carnevale G 1983 J. Math. Phys. 24 522 |
[7] | Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201 |
[8] | Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press) |
[9] | Wazwaz A M 2009 Partial Differential Equations and Solitary Waves Theory (Berlin: Springer) |
[10] | Wazwaz A M 2012 J. Appl. Nonlinear Dyn. 1 51 |
[11] | Leblond H and Mihalache D 2013 Phys. Rep. 523 61 |
[12] | Adem A R and Khalique C M 2013 Comput. & Fluids 81 10 |
[13] | Wazwaz A M 2013 J. Appl. Nonlinear Dyn. 2 95 |
[14] | Osman M S 2019 Nonlinear Dyn. 96 1491 |
[15] | Su T 2017 Appl. Math. Lett. 69 15 |
[16] | Mihalache D 2017 Rom. Rep. Phys. 69 403 |
[17] | Xing Q X, Wu Z W, Mihalache D, and He J S 2017 Nonlinear Dyn. 89 2299 |
[18] | Xu G Q 2011 Appl. Math. Comput. 217 5967 |
[19] | Zhou Q and Zhu Q 2014 Waves Random Complex Media 25 52 |
[20] | Liu X Z Q, Biswas A, Alzahranid A K, and Liu W J 2020 J. Adv. Res. 24 167 |
[21] | Xu S L, Zhou Q, Zhao D, Belić M R, and Zhao Y 2020 Appl. Math. Lett. 106 106230 |
[22] | Khalique C M 2012 Filomat 26 957 |
[23] | Wang H T, Zhou Q, and Liu W J 2022 J. Adv. Res. 38 179 |
[24] | Yan Z W and Lou S Y 2020 Commun. Nonlinear Sci. & Numer. Simul. 91 105425 |
[25] | Dai C Q and Zhang J F 2009 Chaos Solitons & Fractals 39 889 |
[26] | Kruglov V and Triki H 2023 Chin. Phys. Lett. 40 090503 |
[27] | Zhu S Y, Kpng D X, and Lou S Y 2023 Chin. Phys. Lett. 40 080201 |
[28] | Wazwaz A M 2017 Discontinuity Nonlinearity Complexity 6 295 |
[29] | Wazwaz A M 2013 Math. Methods Appl. Sci. 36 349 |
[30] | Wazwaz A M 2018 Optik 172 622 |
[31] | Wazwaz A M 2017 Int. J. Numer. Methods Heat & Fluid Flow 27 2223 |
[32] | Kaur L and Wazwaz A M 2018 Nonlinear Dyn. 94 2469 |
[33] | Chen Y X 2023 Nonlinear Eng. 12 20220319 |
[34] | An Y N and Guo R 2023 Nonlinear Dyn. 111 18291 |
[35] | He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|