CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Moiré Synaptic Transistor for Homogeneous-Architecture Reservoir Computing |
Pengfei Wang1†, Moyu Chen1†, Yongqin Xie1, Chen Pan2, Kenji Watanabe3, Takashi Taniguchi4, Bin Cheng2*, Shi-Jun Liang1*, and Feng Miao1* |
1Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2Institute of Interdisciplinary Physical Sciences, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China 3Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 4International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
|
|
Cite this article: |
Pengfei Wang, Moyu Chen, Yongqin Xie et al 2023 Chin. Phys. Lett. 40 117201 |
|
|
Abstract Reservoir computing has been considered as a promising intelligent computing paradigm for effectively processing complex temporal information. Exploiting tunable and reproducible dynamics in the single electronic device have been desired to implement the “reservoir” and the “readout” layer of reservoir computing system. Two-dimensional moiré materials, with an artificial lattice constant many times larger than the atomic length scale, are one type of most studied artificial quantum materials in community of material science and condensed-matter physics over the past years. These materials are featured with gate-tunable periodic potential and electronic correlation, thus varying the electric field allows the electrons in the moiré potential per unit cell to exhibit distinct and reproducible dynamics, showing great promise in robust reservoir computing. Here, we report that a moiré synaptic transistor can be used to implement the reservoir computing system with a homogeneous reservoir-readout architecture. The synaptic transistor is fabricated based on an h-BN/bilayer graphene/h-BN moiré heterostructure, exhibiting ferroelectricity-like hysteretic gate voltage dependence of resistance. Varying the magnitude of the gate voltage enables the moiré transistor to switch between long-term memory and short-term memory with nonlinear dynamics. By employing the short- and long-term memories as the reservoir nodes and weights of the readout layer, respectively, we construct a full-moiré physical neural network and demonstrate that the classification accuracy of 90.8% can be achieved for the MNIST (Modified National Institute of Standards and Technology) handwritten digits database. Our work would pave the way towards the development of neuromorphic computing based on moiré materials.
|
|
Received: 09 October 2023
Express Letter
Published: 13 October 2023
|
|
PACS: |
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
85.50.-n
|
(Dielectric, ferroelectric, and piezoelectric devices)
|
|
|
|
|
[1] | Tanaka G, Yamane T, Héroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D, and Hirose A 2019 Neural Networks 115 100 |
[2] | Jaeger H and Haas H 2004 Science 304 78 |
[3] | Nakajima K 2020 Jpn. J. Appl. Phys. 59 060501 |
[4] | Qi Z Y, Mi L J, Qian H R, Zheng W G, Guo Y, and Chai Y 2023 Adv. Funct. Mater. 2023 2306149 |
[5] | Du C, Cai F, Zidan M A, Ma W, Lee S H, and Lu W D 2017 Nat. Commun. 8 2204 |
[6] | Midya R, Wang Z, Asapu S, Zhang X, Rao M, Song W, Zhuo Y, Upadhyay N, Xia Q, and Yang J J 2019 Adv. Intell. Syst. 1 1900084 |
[7] | Moon J, Ma W, Shin J H, Cai F, Du C, Lee S H, and Lu W D 2019 Nat. Electron. 2 480 |
[8] | Zhong Y N, Tang J S, Li X Y, Gao B, Qian H, and Wu H G 2021 Nat. Commun. 12 408 |
[9] | Liang X P, Zhong Y N, Tang J S, Liu Z W, Yao P, Sun K Y, Zhang Q T, Gao B, Heidari H, Qian H, and Wu H Q 2022 Nat. Commun. 13 1549 |
[10] | Sun L F, Wang Z R, Jiang J B, Kim Y J, Joo B M, Zheng S J, Lee S, Yu W J, Kong B S, and Yang H 2021 Sci. Adv. 7 eabg1455 |
[11] | Liu K Q, Zhang T, Dang B J, Bao L, Xu L Y, Cheng C D, Yang Z, Huang R, and Yang Y H 2022 Nat. Electron. 5 761 |
[12] | Jiang N J, Tang J, Zhang W Y, Li Y, Li N, Li X Z, Chen X, Fang R R, Guo Z Y, Wang F, Wang J, Li Z, He C, Zhang G, Wang Z, and Shang D 2023 Adv. Opt. Mater. 11 2300271 |
[13] | Chen J W, Zhou Z, Kim B J, Zhou Y, Wang Z Q, Wan T Q, Yan J M, Kang J F, Ahn J H, and Chai Y 2023 Nat. Nanotechnol. 18 882 |
[14] | Milano G, Pedretti G, Montano K, Ricci S, Hashemkhani S, Boarino L, Ielmini D, and Ricciardi C 2022 Nat. Mater. 21 195 |
[15] | Tanaka H, Akai-Kasaya M, Termehyousefi A, Hong L, Fu L, Tamukoh H, Tanaka D, Asai T, and Ogawa T 2018 Nat. Commun. 9 2693 |
[16] | Liu K Q, Dang B J, Zhang T, Yang Z, Bao L, Xu L Y, Cheng C D, Huang R, and Yang Y C 2022 Adv. Mater. 34 2108826 |
[17] | Toprasertpong K, Nako E, Wang Z, Nakane R, Takenaka M, and Takagi S 2022 Commun. Eng. 1 21 |
[18] | Prychynenko D, Sitte M, Litzius K, Krüger B, Bourianoff G, Kläui M, Sinova J, and Everschor-Sitte K 2018 Phys. Rev. Appl. 9 014034 |
[19] | Torrejon J, Riou M, Araujo F A, Tsunegi S, Khalsa G, Querlioz D, Bortolotti P, Cros V, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Stiles M D, and Grollier J 2017 Nature 547 428 |
[20] | Jiang W C, Chen L, Zhou K Y, Li L Y, Fu Q W, Du Y W, and Liu R H 2019 Appl. Phys. Lett. 115 192403 |
[21] | Wu X S, Wang S C, Huang W, Dong Y, Wang Z R, and Huang W G 2023 Nat. Commun. 14 468 |
[22] | Wang S J, Chen X, Zhao C, Kong Y X, Lin B J, Wu Y Y, Bi Z Z, Xuan Z Y, Li T, Li Y X, Zhang W, Ma E, Wang Z R, and Ma W 2023 Nat. Electron. 6 281 |
[23] | Usami Y, van de Ven B, Mathew D G, Chen T, Kotooka T, Kawashima Y, Tanaka Y, Otsuka Y, Ohoyama H, Tamukoh H, Tanaka H, van der Wiel W G, and Matsumoto T 2021 Adv. Mater. 33 2102688 |
[24] | Abbott L F and Regehr W G 2004 Nature 431 796 |
[25] | Chen Z W, Li W J, Fan Z, Dong S, Chen Y H, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, and Liu J M 2023 Nat. Commun. 14 3585 |
[26] | Zhong Y N, Tang J S, Li X Y, Liang X P, Liu Z W, Li Y J, Xi Y, Yao P, Hao Z Q, Gao B, Qian H, and Wu H Q 2022 Nat. Electron. 5 672 |
[27] | Jiang H, Belkin D, Savel'ev S E, Lin S, Wang Z, Li Y, Joshi S, Midya R, Li C, Rao M, Barnell M, Wu Q, Yang J J, and Xia Q 2017 Nat. Commun. 8 882 |
[28] | Wang Z R, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barnell M, Li G L, Xin H L, Williams R S, Xia Q, and Yang J J 2017 Nat. Mater. 16 101 |
[29] | Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L, Xia Q F, and Yang J J 2020 Nat. Rev. Mater. 5 173 |
[30] | Khan A I, Keshavarzi A, and Datta S 2020 Nat. Electron. 3 588 |
[31] | Mulaosmanovic H, Mikolajick T, and Slesazeck S 2018 IEEE Electron Device Lett. 39 135 |
[32] | Chen G R, Jiang L L, Wu S, Lyu B S, Li H Y, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y B, and Wang F 2019 Nat. Phys. 15 237 |
[33] | Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80 |
[34] | Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, Macdonald A H, and Efetov D K 2019 Nature 574 653 |
[35] | Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2020 Nature 588 610 |
[36] | Li Q, Cheng B, Chen M, Xie B, Xie Y, Wang P, Chen F, Liu Z, Watanabe K, Taniguchi T, Liang S J, Wang D, Wang C, Wang Q H, Liu J, and Miao F 2022 Nature 609 479 |
[37] | Li T X, Jiang S W, Li L Z, Zhang Y, Kang K F, Zhu J C, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, and Mak K F 2021 Nature 597 350 |
[38] | Li H Y, Li S W, Regan E C, Wang D, Zhao W Y, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, and Wang F 2021 Nature 597 650 |
[39] | Regan E C, Wang D, Jin C, Bakti U M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, and Wang F 2020 Nature 579 359 |
[40] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 |
[41] | Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, and Jarillo-Herrero P 2021 Science 372 264 |
[42] | Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059 |
[43] | Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y B, and Wang F 2019 Nature 572 215 |
[44] | Park J M, Cao Y, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Nature 590 249 |
[45] | Hao Z Y, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, and Kim P 2021 Science 371 1133 |
[46] | Niu R R, Li Z X, Han X Y, Qu Z Z, Ding D D, Wang Z Y, Liu Q L, Liu T Y, Han C, Watanabe K, Taniguchi T, Wu M, Ren Q, Wang X, Hong J, Mao J, Han Z, Liu K, Gan Z, and Lu J 2022 Nat. Commun. 13 6241 |
[47] | Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L, and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367 |
[48] | Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S, Corte-León H, Wu Z, Clark N, Summerfield A, Hashimoto T, Gao Y, Wang W, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal'ko V I, and Gorbachev R 2022 Nat. Nanotechnol. 17 390 |
[49] | Deb S, Cao W, Raab N, Watanabe K, Taniguchi T, Goldstein M, Kronik L, Urbakh M, Hod O, and Ben S M 2022 Nature 612 465 |
[50] | Zheng Z R, Ma Q, Bi Z, de la Barrera S, Liu M H, Mao N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, and Jarillo-Herrero P 2020 Nature 588 71 |
[51] | Rogée L, Wang L, Zhang Y, Cai S, Wang P, Chhowalla M, Ji W, and Lau S P 2022 Science 376 973 |
[52] | Vizner S M, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O, and Ben S M 2021 Science 372 1462 |
[53] | Yasuda K, Wang X, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Science 372 1458 |
[54] | Klein D R, Xia L Q, Macneill D, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2023 Nat. Nanotechnol. 18 331 |
[55] | Ma C, Yuan S, Cheung P, Watanabe K, Taniguchi T, Zhang F, and Xia F 2022 Nature 604 266 |
[56] | Chen M Y, Chen F Q, Cheng B, Liang S J, and Miao F 2023 J. Semicond. 44 010301 |
[57] | Zhu Z Y, Carr S, Ma Q, and Kaxiras E 2022 Phys. Rev. B 106 205134 |
[58] | Zheng Z, Wang X, Zhu Z, Carr S, Devakul T, de la Barrera S, Paul N, Huang Z, Gao A, Zhang Y, Bérubé D, Natasha E K, Watanabe K, Taniguchi T, Fu L, Wang Y, Xu S Y, Kaxiras E, Jarillo-Herrero P, and Ma Q 2023 arXiv:2306.03922 [cond-mat.mes-hall] |
[59] | Zucker R S and Regehr W G 2002 Annu. Rev. Physiol. 64 355 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|