CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Cooling by Coulomb Heat Drag Based on Three Coupled Quantum Dots |
Jin-Zhu Gao, Xing Liu, Jian-Hui Wang, and Ji-Zhou He* |
Department of Physics, Nanchang University, Nanchang 330031, China |
|
Cite this article: |
Jin-Zhu Gao, Xing Liu, Jian-Hui Wang et al 2023 Chin. Phys. Lett. 40 117301 |
|
|
Abstract We establish a model for a four-terminal thermoelectric system, based on three coupled quantum dots, which consists of a left/right electron reservoir (the source and the drain), two thermal reservoirs and three coupled quantum dots. Based on the master equation theory, we derive the expressions of the electron current and heat flow among the three quantum dots and the corresponding reservoir. We show that the source can be cooled by passing a thermal current between the two thermal reservoirs, with no net heat exchange between the thermal reservoirs and the electron reservoirs. This effect is called the Coulomb heat drag effect. Then, we define the coefficient of performance (COP) and the cooling power. The influence of the main system parameters, such as charging energy, energy level, and temperature, on the performance of the four-terminal thermoelectric system is analyzed in detail. By choosing appropriate parameters one can obtain the maximum cooling power and the corresponding COP. Finally, we also show that the Maxwell demon effect can be realized by using nonequilibrium thermal reservoirs in our four-terminal thermoelectric system.
|
|
Received: 29 June 2023
Published: 02 November 2023
|
|
|
|
|
|
[1] | Benenti G, Casati G, Saito K, and Whitney R S 2017 Phys. Rep. 694 1 |
[2] | Sothmann B, Sánchez R, and Jordan A N 2015 Nanotechnology 26 032001 |
[3] | Jordan A N, Sothmann B, Sánchez R, and Buttiker M 2013 Phys. Rev. B 87 075312 |
[4] | Jiang J H 2014 J. Appl. Phys. 116 194303 |
[5] | Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422 |
[6] | Lin Z B, Li W, Fu J, Yang Y Y, and He J Z 2019 Chin. Phys. Lett. 36 060501 |
[7] | Lin Z B, Yang Y Y, Li W, Wang J H, and He J Z 2020 Phys. Rev. E 101 022117 |
[8] | Su G Z, Zhang Y C, Cai L, Su S H, and Chen J C 2015 Energy 90 1842 |
[9] | Su H, Wang J W, Zhao Q Y, and He J Z 2016 Sci. Sin. Technol. 46 1296 (in Chinese) |
[10] | Yang Y Y, Xu S, Li W, and He J Z 2020 Phys. Scr. 95 095001 |
[11] | Yang Y Y, Xu S, and He J Z 2020 Chin. Phys. Lett. 37 120502 |
[12] | Choi Y and Jordan A N 2015 Physica E 74 465 |
[13] | Chen L G, Ding Z M, and Sun F R 2011 Energy 36 4011 |
[14] | Shi Z C, Fu J Q W F, and He J Z 2017 Chin. Phys. Lett. 34 110501 |
[15] | Jiang J H, Entin-Wohlman O, and Imry Y 2013 New J. Phys. 15 075021 |
[16] | Li C, Zhang Y, and He J 2013 Chin. Phys. Lett. 30 100501 |
[17] | Rutten B, Esposito M, and Cleuren B 2009 Phys. Rev. B 80 235122 |
[18] | Cleuren B, Rutten B, and Van den Broeck C 2012 Phys. Rev. Lett. 108 120603 |
[19] | Shi Z C, He J Z, and Xiao Y L 2015 Sci. Sin. Phys. Mech. Astron. 45 050502 (in Chinese) |
[20] | Li C, Zhang Y, Wang J H, and He J Z 2013 Phys. Rev. E 88 062120 |
[21] | Li W, Fu J, Yang Y Y, and He J Z 2019 Acta Phys. Sin. 68 220501 (in Chinese) |
[22] | Entin-Wohlman O, Imry Y, and Aharony A 2010 Phys. Rev. B 82 115314 |
[23] | Thierschmann H, S'anchez R, Sothmann B, Buhmann H, and Monlenkamp L W 2016 C. R. Phys. 17 1109 |
[24] | Wang J H, Lai Y M, Ye Z L, He J Z, Ma Y L, and Liao Q H 2015 Phys. Rev. E 91 050102(R) |
[25] | Erdman P A, Bhandari B, Fazio R, Pekola J P, and Taddei F 2018 Phys. Rev. B 98 045433 |
[26] | Dare A M 2019 Phys. Rev. B 100 195427 |
[27] | Ren J, Zhu J X, Gubernatis J E, Wang C, and Li B 2012 Phys. Rev. B 85 155443 |
[28] | Narozhny B N and Levchenko A 2016 Rev. Mod. Phys. 88 025003 |
[29] | Yang J, Elouard C, Splettstoesser J, Sothmann B, S'anchez R, and Jordan A N 2019 Phys. Rev. B 100 045418 |
[30] | Sánchez R and Büttiker M 2011 Phys. Rev. B 83 085428 |
[31] | Thierschmann H, Sánchez R, Sothmann B, Arnold F, Hansen W, Buhmann H, and Monlenkamp L W 2015 Nat. Nanotechnol. 10 854 |
[32] | Zhang Y C, Lin G X, and Chen J C 2015 Phys. Rev. E 91 052118 |
[33] | Singha A 2020 J. Appl. Phys. 127 234903 |
[34] | Barman A, Halder S, Varshney S K, Dutta G, and Singha A 2021 Phys. Rev. E 103 012131 |
[35] | Roche B, Roulleau P, Jullien T, Jompol Y, Farrer I, Ritchie D A, and Glattli D A 2015 Nat. Commun. 6 6738 |
[36] | Hartmann F, Pfeffer P, Hǒfling S, Kamp M, and Worschech L 2015 Phys. Rev. Lett. 114 146805 |
[37] | Josefsson M, Svilans A, Burke A, Hoffmann E, Fahlvik S, Thelander C, Leijnse M, and Linke H 2018 Nat. Nanotechnol. 13 920 |
[38] | Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, and Ritchie D A 2009 Phys. Rev. Lett. 102 146602 |
[39] | Keller A J, Lim J S, Sánchez R, Lopez R, Amasha S, Katine J A, Shtrikman H, and Goldhaber-Gordon D 2016 Phys. Rev. Lett. 117 066602 |
[40] | Whitney R S, Sánchez R, Haupt F, and Splettstoesser J 2016 Physica E 82 176 |
[41] | Fu T, Du J, Su S, Su G, and Chen J 2021 Eur. Phys. J. Plus 136 1059 |
[42] | Xi M M, Wang R Q, Lu J C, and Jiang J H 2021 Chin. Phys. Lett. 38 088801 |
[43] | Lu J C, Jiang J H, and Imry Y 2021 Phys. Rev. B 103 085429 |
[44] | Liu X, Xu S, Gao J Z, and He J Z 2022 Acta. Phys. Sin. 71 190502 (in Chinese) |
[45] | Entin-Wohlman O, Jiang J H, and Imry Y 2014 Phys. Rev. E 89 012123 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|