Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 117301    DOI: 10.1088/0256-307X/40/11/117301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Cooling by Coulomb Heat Drag Based on Three Coupled Quantum Dots
Jin-Zhu Gao, Xing Liu, Jian-Hui Wang, and Ji-Zhou He*
Department of Physics, Nanchang University, Nanchang 330031, China
Cite this article:   
Jin-Zhu Gao, Xing Liu, Jian-Hui Wang et al  2023 Chin. Phys. Lett. 40 117301
Download: PDF(2859KB)   PDF(mobile)(2885KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We establish a model for a four-terminal thermoelectric system, based on three coupled quantum dots, which consists of a left/right electron reservoir (the source and the drain), two thermal reservoirs and three coupled quantum dots. Based on the master equation theory, we derive the expressions of the electron current and heat flow among the three quantum dots and the corresponding reservoir. We show that the source can be cooled by passing a thermal current between the two thermal reservoirs, with no net heat exchange between the thermal reservoirs and the electron reservoirs. This effect is called the Coulomb heat drag effect. Then, we define the coefficient of performance (COP) and the cooling power. The influence of the main system parameters, such as charging energy, energy level, and temperature, on the performance of the four-terminal thermoelectric system is analyzed in detail. By choosing appropriate parameters one can obtain the maximum cooling power and the corresponding COP. Finally, we also show that the Maxwell demon effect can be realized by using nonequilibrium thermal reservoirs in our four-terminal thermoelectric system.
Received: 29 June 2023      Published: 02 November 2023
PACS:  05.70.-a (Thermodynamics)  
  73.50.Lw (Thermoelectric effects)  
  73.63.Kv (Quantum dots)  
  85.80.Fi (Thermoelectric devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/117301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/117301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Zhu Gao
Xing Liu
Jian-Hui Wang
and Ji-Zhou He
[1] Benenti G, Casati G, Saito K, and Whitney R S 2017 Phys. Rep. 694 1
[2] Sothmann B, Sánchez R, and Jordan A N 2015 Nanotechnology 26 032001
[3] Jordan A N, Sothmann B, Sánchez R, and Buttiker M 2013 Phys. Rev. B 87 075312
[4] Jiang J H 2014 J. Appl. Phys. 116 194303
[5] Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422
[6] Lin Z B, Li W, Fu J, Yang Y Y, and He J Z 2019 Chin. Phys. Lett. 36 060501
[7] Lin Z B, Yang Y Y, Li W, Wang J H, and He J Z 2020 Phys. Rev. E 101 022117
[8] Su G Z, Zhang Y C, Cai L, Su S H, and Chen J C 2015 Energy 90 1842
[9] Su H, Wang J W, Zhao Q Y, and He J Z 2016 Sci. Sin. Technol. 46 1296 (in Chinese)
[10] Yang Y Y, Xu S, Li W, and He J Z 2020 Phys. Scr. 95 095001
[11] Yang Y Y, Xu S, and He J Z 2020 Chin. Phys. Lett. 37 120502
[12] Choi Y and Jordan A N 2015 Physica E 74 465
[13] Chen L G, Ding Z M, and Sun F R 2011 Energy 36 4011
[14] Shi Z C, Fu J Q W F, and He J Z 2017 Chin. Phys. Lett. 34 110501
[15] Jiang J H, Entin-Wohlman O, and Imry Y 2013 New J. Phys. 15 075021
[16] Li C, Zhang Y, and He J 2013 Chin. Phys. Lett. 30 100501
[17] Rutten B, Esposito M, and Cleuren B 2009 Phys. Rev. B 80 235122
[18] Cleuren B, Rutten B, and Van den Broeck C 2012 Phys. Rev. Lett. 108 120603
[19] Shi Z C, He J Z, and Xiao Y L 2015 Sci. Sin. Phys. Mech. Astron. 45 050502 (in Chinese)
[20] Li C, Zhang Y, Wang J H, and He J Z 2013 Phys. Rev. E 88 062120
[21] Li W, Fu J, Yang Y Y, and He J Z 2019 Acta Phys. Sin. 68 220501 (in Chinese)
[22] Entin-Wohlman O, Imry Y, and Aharony A 2010 Phys. Rev. B 82 115314
[23] Thierschmann H, S'anchez R, Sothmann B, Buhmann H, and Monlenkamp L W 2016 C. R. Phys. 17 1109
[24] Wang J H, Lai Y M, Ye Z L, He J Z, Ma Y L, and Liao Q H 2015 Phys. Rev. E 91 050102(R)
[25] Erdman P A, Bhandari B, Fazio R, Pekola J P, and Taddei F 2018 Phys. Rev. B 98 045433
[26] Dare A M 2019 Phys. Rev. B 100 195427
[27] Ren J, Zhu J X, Gubernatis J E, Wang C, and Li B 2012 Phys. Rev. B 85 155443
[28] Narozhny B N and Levchenko A 2016 Rev. Mod. Phys. 88 025003
[29] Yang J, Elouard C, Splettstoesser J, Sothmann B, S'anchez R, and Jordan A N 2019 Phys. Rev. B 100 045418
[30] Sánchez R and Büttiker M 2011 Phys. Rev. B 83 085428
[31] Thierschmann H, Sánchez R, Sothmann B, Arnold F, Hansen W, Buhmann H, and Monlenkamp L W 2015 Nat. Nanotechnol. 10 854
[32] Zhang Y C, Lin G X, and Chen J C 2015 Phys. Rev. E 91 052118
[33] Singha A 2020 J. Appl. Phys. 127 234903
[34] Barman A, Halder S, Varshney S K, Dutta G, and Singha A 2021 Phys. Rev. E 103 012131
[35] Roche B, Roulleau P, Jullien T, Jompol Y, Farrer I, Ritchie D A, and Glattli D A 2015 Nat. Commun. 6 6738
[36] Hartmann F, Pfeffer P, Hǒfling S, Kamp M, and Worschech L 2015 Phys. Rev. Lett. 114 146805
[37] Josefsson M, Svilans A, Burke A, Hoffmann E, Fahlvik S, Thelander C, Leijnse M, and Linke H 2018 Nat. Nanotechnol. 13 920
[38] Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, and Ritchie D A 2009 Phys. Rev. Lett. 102 146602
[39] Keller A J, Lim J S, Sánchez R, Lopez R, Amasha S, Katine J A, Shtrikman H, and Goldhaber-Gordon D 2016 Phys. Rev. Lett. 117 066602
[40] Whitney R S, Sánchez R, Haupt F, and Splettstoesser J 2016 Physica E 82 176
[41] Fu T, Du J, Su S, Su G, and Chen J 2021 Eur. Phys. J. Plus 136 1059
[42] Xi M M, Wang R Q, Lu J C, and Jiang J H 2021 Chin. Phys. Lett. 38 088801
[43] Lu J C, Jiang J H, and Imry Y 2021 Phys. Rev. B 103 085429
[44] Liu X, Xu S, Gao J Z, and He J Z 2022 Acta. Phys. Sin. 71 190502 (in Chinese)
[45] Entin-Wohlman O, Jiang J H, and Imry Y 2014 Phys. Rev. E 89 012123
Related articles from Frontiers Journals
[1] Minghao Li, Shihao Xia, Youlin Wang, Minglong Lv, Jincan Chen, and Shanhe Su. Efficiency Bound of Learning with Coarse Graining[J]. Chin. Phys. Lett., 2023, 40(11): 117301
[2] Qiang-Kai-Lai Huang, Yun-Kai Liu, Pei-Chao Cao, Xue-Feng Zhu, and Ying Li. Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect[J]. Chin. Phys. Lett., 2023, 40(10): 117301
[3] Qi Lou and Ming-Gang Xia. Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial[J]. Chin. Phys. Lett., 2023, 40(9): 117301
[4] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 117301
[5] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 117301
[6] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 117301
[7] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 117301
[8] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 117301
[9] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 117301
[10] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 117301
[11] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 117301
[12] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 117301
[13] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 117301
[14] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 117301
[15] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 117301
Viewed
Full text


Abstract