Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 117103    DOI: 10.1088/0256-307X/40/11/117103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electron-Correlation-Induced Charge Density Wave in FeGe
Lin Wu, Yating Hu, Dongze Fan, Di Wang*, and Xiangang Wan*
1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Lin Wu, Yating Hu, Dongze Fan et al  2023 Chin. Phys. Lett. 40 117103
Download: PDF(5175KB)   PDF(mobile)(5385KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As the first magnetic kagome material to exhibit the charge density wave (CDW) order, FeGe has attracted much attention in recent research. Similar to $A$V$_{3}$Sb$_{5}$ ($A$ = K, Cs, Rb), FeGe exhibits the CDW pattern with an in-plane 2$\times$2 structure and the existence of van Hove singularities near the Fermi level. However, sharply different from $A$V$_{3}$Sb$_{5}$ which has phonon instability at $M$ point, all the theoretically calculated phonon frequencies in FeGe remain positive. Based on first-principles calculations, we surprisingly find that the maximum of nesting function is at $K$ point instead of $M$ point. Two Fermi pockets with Fe-$d_{xz}$ and Fe-$d_{x^{2}-y^{2}}$/$d_{xy}$ orbital characters have large contribution to the Fermi nesting, which evolve significantly with $k_{z}$, indicating the highly three-dimensional (3D) feature of FeGe in contrast to $A$V$_{3}$Sb$_{5}$. Considering the effect of local Coulomb interaction, we reveal that the instability at $K$ point is significantly suppressed due to the sublattice interference mechanism. Meanwhile, the wave functions nested by vector $M$ have many ingredients located at the same Fe site, thus the instability at $M$ point is enhanced. This indicates that the electron correlation, rather than electron-phonon interaction, plays a key role in the CDW transition at $M$ point.
Received: 29 September 2023      Express Letter Published: 23 October 2023
PACS:  71.45.Lr (Charge-density-wave systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/117103       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/117103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lin Wu
Yating Hu
Dongze Fan
Di Wang
and Xiangang Wan
[1] Syôzi I 1951 Prog. Theor. Phys. 6 306
[2] Yin J X, Lian B, and Hasan M Z 2022 Nature 612 647
[3] Chen H, Hu B, Ye Y, Yang H, and Gao H J 2022 Chin. Phys. B 31 097405
[4] Nguyen T and Li M 2022 J. Appl. Phys. 131 060901
[5] Mielke A 1991 J. Phys. A 24 L73
[6] Tanaka A and Ueda H 2003 Phys. Rev. Lett. 90 067204
[7] Pollmann F, Fulde P, and Shtengel K 2008 Phys. Rev. Lett. 100 136404
[8] Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405
[9] Park T, Ye M, and Balents L 2021 Phys. Rev. B 104 035142
[10] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[11] Kiesel M L and Thomale R 2012 Phys. Rev. B 86 121105
[12] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[13] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S, and Hasan M Z 2020 Nature 583 533
[14] Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, and Nakatsuji S 2017 Nat. Mater. 16 1090
[15] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, and Beidenkopf H 2019 Science 365 1286
[16] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, and Chen Y L 2019 Science 365 1282
[17] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H, and Hasan M Z 2019 Nat. Phys. 15 443
[18] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[19] Subedi A 2022 Phys. Rev. Mater. 6 015001
[20] Miao H, Li H X, Meier W R, Huon A, Lee H N, Said A, Lei H C, Ortiz B R, Wilson S D, Yin J X, Hasan M Z, Wang Z, Tan H, and Yan B 2021 Phys. Rev. B 104 195132
[21] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D, and Hasan M Z 2021 Nat. Mater. 20 1353
[22] Lin Y P and Nandkishore R M 2021 Phys. Rev. B 104 045122
[23] Li H X, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J, and Miao H 2021 Phys. Rev. X 11 031050
[24] Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, and Guguchia Z 2022 Nature 602 245
[25] Denner M M, Thomale R, and Neupert T 2021 Phys. Rev. Lett. 127 217601
[26] Nie L P, Sun K L, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature 604 59
[27] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J, and Chen X H 2021 Nat. Commun. 12 3645
[28] Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y, and Wen H H 2021 Nat. Commun. 12 6727
[29] Tan H X, Liu Y Z, Wang Z Q, and Yan B H 2021 Phys. Rev. Lett. 127 046401
[30] Wu S F, Ortiz B R, Tan H X, Wilson S D, Yan B H, Birol T, and Blumberg G 2022 Phys. Rev. B 105 155106
[31] Kang M G, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Kaxiras E, Wilson S D, Park J H, and Comin R 2022 Nat. Phys. 18 301
[32] Si J G, Lu W J, Sun Y P, Liu P F, and Wang B T 2022 Phys. Rev. B 105 024517
[33] Luo H L, Gao Q, Liu H X, Gu Y H, Wu D S, Yi C J, Jia J J, Wu S L, Luo X Y, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z, and Zhou X J 2022 Nat. Commun. 13 273
[34] Zheng L X, Wu Z M, Yang Y, Nie L P, Shan M, Sun K L, Song D W, Yu F, Li J, Zhao D, Li S, Kang B, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature 611 682
[35] Feng X L, Jiang K, Wang Z Q, and Hu J P 2021 Sci. Bull. 66 1384
[36] Jiang K, Wu T, Yin J, Wang Z, Hasan M Z, Wilson S D, Chen X, and Hu J 2022 Natl. Sci. Rev. 10 nwac199
[37] Feng X, Zhang Y, Jiang K, and Hu J 2021 Phys. Rev. B 104 165136
[38] Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135
[39] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z, and Gao H J 2021 Nature 599 222
[40] Ortiz B, Teicher S, Hu Y, Zuo J, Sarte P, Schueller E, Abeykoon A, Krogstad M, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S 2020 Phys. Rev. Lett. 125 247002
[41] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[42] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 Nature 599 216
[43] Jeong M Y, Yang H J, Kim H S, Kim Y B, Lee S, and Han M J 2022 Phys. Rev. B 105 235145
[44] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403
[45] Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G, and Chen X 2021 Chin. Phys. Lett. 38 057402
[46] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z, Wang N, Sun J, Zhao Z, Li D, Liu S, Zhang H, Chen H, Jin K, Cheng J, Yu L, Zhou F, Dong X, Hu J, Gao H J, and Zhao Z 2021 Chin. Phys. Lett. 38 057403
[47] Mu C, Yin Q W, Tu Z J, Gong C S, Lei H C, Li Z, and Luo J L 2021 Chin. Phys. Lett. 38 077402
[48] Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802
[49] Rüegg A and Fiete G A 2011 Phys. Rev. B 83 165118
[50] O'Brien A, Pollmann F, and Fulde P 2010 Phys. Rev. B 81 235115
[51] Ohgushi K, Murakami S, and Nagaosa N 2000 Phys. Rev. B 62 R6065
[52] Liu E K, Sun Y, Kumar N, Muechler L, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125
[53] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A R C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C, and Parkin S S P 2016 Sci. Adv. 2 e1501870
[54] Kiyohara N, Tomita T, and Nakatsuji S 2016 Phys. Rev. Appl. 5 064009
[55] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, S̆mejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T, and Ali M N 2020 Sci. Adv. 6 eabb6003
[56] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 Phys. Rev. B 104 L041103
[57] Scammell H D, Ingham J, Li T, and Sushkov O P 2023 Nat. Commun. 14 605
[58] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Ghimire M P, Checkelsky J G, and Comin R 2020 Nat. Mater. 19 163
[59] Xie Y, Chen L, Chen T, Wang Q, Yin Q, Stewart J R, Stone M B, Daemen L L, Feng E, Cao H, Lei H, Yin Z, MacDonald A H, and Dai P 2021 Commun. Phys. 4 240
[60] Sales B C, Yan J, Meier W R, Christianson A D, Okamoto S, and McGuire M A 2019 Phys. Rev. Mater. 3 114203
[61] Do S H, Kaneko K, Kajimoto R, Kamazawa K, Stone M B, Lin J Y Y, Itoh S, Masuda T, Samolyuk G D, Dagotto E, Meier W R, Sales B C, Miao H, and Christianson A D 2022 Phys. Rev. B 105 L180403
[62] Zhang Y F, Ni X S, Datta T, Wang M, Yao D X, and Cao K 2022 Phys. Rev. B 106 184422
[63] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638
[64] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S H, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C, and Zhang Z 2018 Phys. Rev. Lett. 121 096401
[65] Teng X, Oh J S, Tan H, Chen L, Huang J, Gao B, Yin J X, Chu J H, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Granroth G E, Yan B, Birgeneau R J, Dai P, and Yi M 2023 Nat. Phys. 19 814
[66] Zhou H J, Yan S S, Fan D Z, Wang D, and Wan X G 2023 Phys. Rev. B 108 035138
[67] Teng X K, Chen L B, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M, and Dai P 2022 Nature 609 490
[68] Yin J X, Jiang Y X, Teng X, Hossain M S, Mardanya S, Chang T R, Ye Z, Xu G, Denner M M, Neupert T, Lienhard B, Deng H B, Setty C, Si Q, Chang G, Guguchia Z, Gao B, Shumiya N, Zhang Q, Cochran T A, Multer D, Yi M, Dai P, and Hasan M Z 2022 Phys. Rev. Lett. 129 166401
[69] Miao H, Zhang T T, Li H X, Fabbris G, Said A H, Tartaglia R, Yilmaz T, Vescovo E, Yin J X, Murakami S, Feng L X, Jiang K, Wu X L, Wang A F, Okamoto S, Wang Y L, and Lee H N 2023 Nat. Commun. 14 6183
[70] Shao S, Yin J X, Belopolski I, You J Y, Hou T, Chen H, Jiang Y X, Hossain M S, Yahyavi M, Hsu C H, Feng Y, Bansil A, Hasan M Z, and Chang G 2023 ACS Nano 17 10164
[71] Chen Z, Wu X, Yin R, Zhang J, Wang S, Li Y, Li M, Wang A, Wang Y, Yan Y J, and Feng D L 2023 arXiv:2302.04490 [cond-mat.str-el]
[72] Setty C, Lane C A, Chen L, Hu H, Zhu J X, and Si Q 2022 arXiv:2203.01930 [cond-mat.str-el]
[73] Wang Y 2023 arXiv:2304.01604 [cond-mat.str-el]
[74] Ohoyama T, Kanematsu K, and Yasukōchi K 1963 J. Phys. Soc. Jpn. 18 589
[75] Beckman O, Carrander K, Lundgren L, and Richardson M 1972 Phys. Scr. 6 151
[76] Häggsträm L, Ericsson T, Wäppling R, and Karlsson E 1975 Phys. Scr. 11 55
[77] Gäfvert U, Lundgren L, Westerstrandh B, and Beckman O 1977 J. Phys. Chem. Solids 38 1333
[78] Forsyth J B, Wilkinson C, and Gardner P 1978 J. Phys. F 8 2195
[79] Bernhard J, Lebech B, and Beckman O 1984 J. Phys. F 14 2379
[80] Bernhard J, Lebech B, and Beckman O 1988 J. Phys. F 18 539
[81] Doniach S and Sondheime E H 1998 Green's Functions for Solid State Physicists (Singerpore: World Scientific)
[82] Wu X X, Schwemmer T, Müller T, Consiglio A, Sangiovanni G, Sante D D, Iqbal Y, Hanke W, Schnyder A P, Denner M M, Fischer M H, Neupert T, and Thomale R 2021 Phys. Rev. Lett. 127 177001
[83] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101
[84] Vosko S H, Wilk L, and Nusair M 1980 Can. J. Phys. 58 1200
[85] Kresse G and Hafner J 1993 Phys. Rev. B 47 558(R)
[86] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[87] Blüchl P E 1994 Phys. Rev. B 50 17953
[88] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[89] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L et al. 2009 J. Phys.: Condens. Matter 21 395502
[90] Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso A D, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G et al. 2017 J. Phys.: Condens. Matter 29 465901
[91] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[92]Bradley C J and Cracknell A P 1972 The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford: Oxford University Press)
[93] Tang F and Wan X 2021 Phys. Rev. B 104 085137
[94] Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135
[95] Yi M, Zhang Y, Shen Z X, and Lu D 2017 npj Quantum Mater. 2 57
[96] Yin Z P, Haule K, and Kotliar G 2011 Nat. Mater. 10 932
[97] Chubukov A 2012 Annu. Rev. Condens. Matter Phys. 3 57
[98] Hirschfeld P J
Related articles from Frontiers Journals
[1] Li Zhu, Wei-Min Zhao, Zhen-Yu Jia, Huiping Li, Xuedong Xie, Qi-Yuan Li, Qi-Wei Wang, Li-Guo Dou, Ju-Gang Hu, Yi Zhang, Wenguang Zhu, Shun-Li Yu, Jian-Xin Li, and Shao-Chun Li. Electron-Exciton Coupling in 1T-TiSe$_{2}$ Bilayer[J]. Chin. Phys. Lett., 2023, 40(5): 117103
[2] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 117103
[3] Chao Mu, Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Hechang Lei, Zheng Li, and Jianlin Luo. S-Wave Superconductivity in Kagome Metal CsV$_{3}$Sb$_{5}$ Revealed by $^{121/123}$Sb NQR and $^{51}$V NMR Measurements[J]. Chin. Phys. Lett., 2021, 38(7): 117103
[4] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 117103
[5] J. E. Taylor, Z. Zhang, G. Cao, L. H. Haber, R. Jin, E. W. Plummer. Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation[J]. Chin. Phys. Lett., 2018, 35(9): 117103
[6] Cong-Cong Fan, Ji-Shan Liu, Kai-Li Zhang, Wan-Ling Liu, Xiang-Le Lu, Zheng-Tai Liu, Dong Wu, Zhong-Hao Liu, Da-Wei Shen, Li-Xing You. Two Gaps in Semiconducting EuSbTe$_3$ Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 117103
[7] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 117103
[8] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 117103
[9] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 117103
[10] WANG Pei-Pei, XUE Mian-Qi, LONG Yu-Jia, ZHAO Ling-Xiao, CAI Yao, YANG Huai-Xin, LI Jian-Qi, REN Zhi-An, CHEN Gen-Fu. Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe2[J]. Chin. Phys. Lett., 2015, 32(11): 117103
[11] WANG Pei-Pei, LONG Yu-Jia, ZHAO Ling-Xiao, CHEN Dong, XUE Mian-Qi, CHEN Gen-Fu. Anisotropic Transport and Magnetic Properties of Charge-Density-Wave Materials RSeTe2 (R = La, Ce, Pr, Nd)[J]. Chin. Phys. Lett., 2015, 32(08): 117103
[12] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 117103
[13] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 117103
[14] WU Yue, DONG Xiao-Li, MA Ming-Wei, YANG Huai-Xin, ZHANG Chao, ZHOU Fang, ZHOU Xing-Jiang, ZHAO Zhong-Xian. Two Superconducting Phases and Their Characteristics in Layered BaTi2(Sb1?xBix)2O with x=0.16[J]. Chin. Phys. Lett., 2014, 31(07): 117103
[15] WANG Qing-Bo, XU Xiang-Fan, TAO Qian, WANG Hong-Tao, XU Zhu-An. Metal--Insulator Transition in Ca-Doped Sr14-xCaxCu24O41 Systems Probed by Thermopower Measurements[J]. Chin. Phys. Lett., 2008, 25(5): 117103
Viewed
Full text


Abstract