CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium |
Yao Wang1,2†, Zhenzhen Lei1†, Jinsen Zhang1, Xinyong Tao1, Chenqiang Hua3,4*, and Yunhao Lu3 |
1College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China 2Moganshan Research Institute at Deqing County Zhejiang University of Technology, Huzhou 313000, China 3School of Physics, Zhejiang University, Hangzhou 310027, China 4Zhongfa Aviation Institute of Beihang University, Hangzhou 311115, China
|
|
Cite this article: |
Yao Wang, Zhenzhen Lei, Jinsen Zhang et al 2023 Chin. Phys. Lett. 40 117102 |
|
|
Abstract Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though counter-intuitive, here we propose several new phases of tellurium with (anti)ferroelectricity. Two-dimensional films can be viewed as a collection of one-dimensional chains, and lone-pair instability is responsible for the (anti)ferroelectricity. The total polarization is determined to be $0.34 \times 10^{-10}$ C/m for the FE ground state. Due to the local polarization field in the FE film, we show a large Rashba splitting ($\alpha_{\scriptscriptstyle{\rm R}} \sim 2$ eV$\cdot$Å) with nonzero spin Hall conductivity for experimental detection. Furthermore, a dipole-like distribution of Berry curvature is verified, which may facilitate a nonlinear Hall effect. Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field, they can be reversed through FE phase transition. Our results not only broaden the elemental FE materials, but also shed light on their intriguing transport phenomena.
|
|
Received: 27 August 2023
Editors' Suggestion
Published: 07 November 2023
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
72.80.Cw
|
(Elemental semiconductors)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, and Jiang D 2004 Science 306 666 |
[2] | Fang W S, Huang L, Zaman S, Wang Z, Han Y J, and Xia B Y 2020 Chem. Res. Chin. Univ. 36 611 |
[3] | Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H, and Guo Z 2020 J. Mater. Chem. C 8 387 |
[4] | Rehman M U, Hua C, and Lu Y 2020 Chin. Phys. B 29 057304 |
[5] | Qi L, Ruan S, and Zeng Y J 2021 Adv. Mater. 33 2005098 |
[6] | Xie Z J, Zhang B, Ge Y Q, Zhu Y, Nie G H, Song Y F, Lim C K, Zhang H, and Prasad P N 2022 Chem. Rev. 122 1127 |
[7] | Wang Y, Mao J, Meng X, Yu L, Deng D, and Bao X 2019 Chem. Rev. 119 1806 |
[8] | Fan F R, Wang R, Zhang H, and Wu W 2021 Chem. Soc. Rev. 50 10983 |
[9] | Sethulakshmi N, Mishra A, Ajayan P M, Kawazoe Y, Roy A K, Singh A K, and Tiwary C S 2019 Mater. Today 27 107 |
[10] | Rojaee R and Shahbazian-Yassar R 2020 ACS Nano 14 2628 |
[11] | Gao Y Y, Gao M Y, and Lu Y R 2021 Nanoscale 13 19324 |
[12] | Wang C S, You L, Cobden D, and Wang J L 2023 Nat. Mater. 22 542 |
[13] | Padilha J E, Peelaers H, Janotti A, and Van de Walle C G 2014 Phys. Rev. B 90 205420 |
[14] | Avsar A, Ochoa H, Guinea F, Özyilmaz B, van Wees B J, and Vera-Marun I J 2020 Rev. Mod. Phys. 92 021003 |
[15] | Wan Y, Hu T, Mao X, Fu J, Yuan K, Song Y, Gan X, Xu X, Xue M, Cheng X, Huang C, Yang J, Dai L, Zeng H, and Kan E 2022 Phys. Rev. Lett. 128 067601 |
[16] | Park J W, Jung Y S, Park S H, Choi H J, and Cho Y S 2022 Adv. Opt. Mater. 10 2200898 |
[17] | Yasuda K, Wang X, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Science 372 1458 |
[18] | Yuan S G, Luo X, Chan H L, Xiao C C, Dai Y W, Xie M H, and Hao J H 2019 Nat. Commun. 10 1775 |
[19] | Shang J, Shen S, Wang L, Ma Y, Liao T, Gu Y, and Kou L 2022 J. Phys. Chem. Lett. 13 2027 |
[20] | Hua C Q, Bai H, Zheng Y, Xu Z A, Yang S A, Lu Y, and Wei S H 2021 Chin. Phys. Lett. 38 077501 |
[21] | Ye Q, Shen Y H, and Duan C G 2021 Chin. Phys. Lett. 38 087702 |
[22] | Wu F F, Li L, Xu Q L, Liu L, Yuan Y L, Zhao J J, Huang Z H, Zan X Z, Watanabe K, Taniguchi T, Shi D X, Xian L G, Yang W, Du L J, and Zhang G Y 2023 Chin. Phys. Lett. 40 047303 |
[23] | Zhang X L, Lu Y H, and Chen L 2023 Chin. Phys. Lett. 40 067701 |
[24] | Liu K H, Ma X K, Xu S K, Li Y Y, and Zhao M W 2023 npj Comput. Mater. 9 16 |
[25] | de la Barrera S C, Cao Q R, Gao Y, Gao Y, Bheemarasetty V S, Yan J Q, Mandrus D G, Zhu W G, Xiao D, and Hunt B M 2021 Nat. Commun. 12 5298 |
[26] | Hong Y F, Deng J K, Ding X D, Sun J, and Liu J Z 2023 J. Phys. Chem. Lett. 14 3160 |
[27] | Qian Z, Zhou J, Wang H, and Liu S 2023 npj Comput. Mater. 9 67 |
[28] | Xiao C C, Wang F, Yang S A, Lu Y, Feng Y P, and Zhang S B 2018 Adv. Funct. Mater. 28 1707383 |
[29] | Zhu Z L, Cai X L, Yi S H, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y, and Zhang Z Y 2017 Phys. Rev. Lett. 119 106101 |
[30] | Deng S Q, Köhler J, and Simon A 2006 Angew. Chem. Int. Ed. 45 599 |
[31] | Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y, and Wee A T S 2023 Nature 617 67 |
[32] | Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S A, Lu Y, and Ji W 2018 Mater. Horiz. 5 521 |
[33] | Liang Z F, Wang Y, Hua C Q, Xiao C C, Chen M G, Jiang Z, Tai R Z, Lu Y H, and Song F 2019 Nanoscale 11 14134 |
[34] | Wang C, Zhou X Y, Qiao J S, Zhou L W, Kong X H, Pan Y H, Cheng Z H, Chai Y, and Ji W 2018 Nanoscale 10 22263 |
[35] | Hirayama M, Okugawa R, Ishibashi S, Murakami S, and Miyake T 2015 Phys. Rev. Lett. 114 206401 |
[36] | Lin S Q, Li W, Chen Z W, Shen J W, Ge B H, and Pei Y Z 2016 Nat. Commun. 7 10287 |
[37] | Liu D, Lin X Q, and Tománek D 2018 Nano Lett. 18 4908 |
[38] | Wang Y X, Qiu G, Wang R X, Huang S Y, Wang Q X, Liu Y Y, Du Y C, Goddard W A, Kim M J, Xu X F, Ye P D, and Wu W Z 2018 Nat. Electron. 1 228 |
[39] | Qiao J S, Pan Y H, Yang F, Wang C, Chai Y, and Ji W 2018 Sci. Bull. 63 159 |
[40] | Qiu G, Niu C, Wang Y X, Si M W, Zhang Z C, Wu W Z, and Ye P D 2020 Nat. Nanotechnol. 15 585 |
[41] | Wu M H, Dong S, Yao K L, Liu J M, and Zeng X C 2016 Nano Lett. 16 7309 |
[42] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[43] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[44] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[45] | Klimeš J, Bowler D R, and Michaelides A 2011 Phys. Rev. B 83 195131 |
[46] | Gonze X, Allan D C, and Teter M P 1992 Phys. Rev. Lett. 68 3603 |
[47] | Guo G Y, Yao Y, and Niu Q 2005 Phys. Rev. Lett. 94 226601 |
[48] | Qiao J F, Zhou J Q, Yuan Z, and Zhao W S 2018 Phys. Rev. B 98 214402 |
[49] | Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442 |
[50] | Henkelman G, Uberuaga B P, and Jónsson H 2000 J. Chem. Phys. 113 9901 |
[51] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685 |
[52] | Wang V, Xu N, Liu J C, Tang G, and Geng W T 2021 Comput. Phys. Commun. 267 108033 |
[53] | Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653 |
[54] | Tong Q C, Lv J, Gao P Y, and Wang Y C 2019 Chin. Phys. B 28 106105 |
[55] | Poleschner H and Seppelt K 2008 Angew. Chem. Int. Ed. 47 6461 |
[56] | Dronskowski R and Bloechl P E 1993 J. Phys. Chem. C 97 8617 |
[57] | Tan Z, Zhang H, Wu X, Xing J, Zhang Q, and Zhu J 2023 Phys. Rev. Lett. 130 246802 |
[58] | Liu Q H, Guo Y Z, and Freeman A J 2013 Nano Lett. 13 5264 |
[59] | Gupta S and Yakobson B I 2021 J. Am. Chem. Soc. 143 3503 |
[60] | Sheng F, Hua C, Cheng M, Hu J, Sun X, Tao Q, Lu H, Lu Y, Zhong M, Watanabe K, Taniguchi T, Xia Q, Xu Z A, and Zheng Y 2021 Nature 593 56 |
[61] | Wang T H and Jeng H T 2017 npj Comput. Mater. 3 5 |
[62] | Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blugel S, Echenique P M, and Hofmann P 2004 Phys. Rev. Lett. 93 046403 |
[63] | LaShell S, McDougall B A, and Jensen E 1996 Phys. Rev. Lett. 77 3419 |
[64] | Varykhalov A, Marchenko D, Scholz M R, Rienks E D, Kim T K, Bihlmayer G, Sanchez-Barriga J, and Rader O 2012 Phys. Rev. Lett. 108 066804 |
[65] | Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, and Xiao D 2012 Phys. Rev. B 86 165108 |
[66] | Sinova J, Valenzuela S O, Wunderlich J, Back C H, and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 |
[67] | Wunderlich J, Park B G, Irvine A C, Zârbo L P, Rozkotová E, Nemec P, Novák V, Sinova J, and Jungwirth T 2010 Science 330 1801 |
[68] | Jungwirth T, Wunderlich J, and Olejník K 2012 Nat. Mater. 11 382 |
[69] | Lu H Z, Qi Z B, Huang Y Q, Cheng M, Sheng F, Deng Z K, Chen S, Hua C Q, He P M, Lu Y H, and Zheng Y 2023 Phys. Rev. B 107 165419 |
[70] | Xiao D, Yao W, and Niu Q 2007 Phys. Rev. Lett. 99 236809 |
[71] | Xiao D, Liu G B, Feng W, Xu X, and Yao W 2012 Phys. Rev. Lett. 108 196802 |
[72] | Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, and Jarillo-Herrero P 2019 Nature 565 337 |
[73] | Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|