Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 117101    DOI: 10.1088/0256-307X/40/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Energy Landscape and Phase Competition of CsV$_{3}$Sb$_{5}$, CsV$_{6}$Sb$_{6}$ and TbMn$_{6}$Sn$_{6}$-Type Kagome Materials
Guanghui Cai1,2†, Yutao Jiang1,2†, Hui Zhou1,2, Ze Yu1,2, Kun Jiang1, Youguo Shi1, Sheng Meng1,2,3*, and Miao Liu1,3,4*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Guanghui Cai, Yutao Jiang, Hui Zhou et al  2023 Chin. Phys. Lett. 40 117101
Download: PDF(8353KB)   PDF(mobile)(8421KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials. In this study, we performed element substitutions on CsV$_{3}$Sb$_{5}$ with space group $P6/mmm$, TbMn$_{6}$Sn$_{6}$ with space group $P6/mmm$, and CsV$_{6}$Sb$_{6}$ with space group $R\bar{3}m$, as the parent compounds. Totally 4158 materials were obtained through element substitutions, and these materials were then calculated via density functional theory in high-throughput mode. Afterwards, 48 materials were identified with high thermodynamic stability ($E_{\rm{hull}} < 5$ meV/atom). Furthermore, we compared the thermodynamic stability of three different phases with the same elemental composition and predicted some competing phases that may arise during material synthesis. Finally, by calculating the electronic structures of these materials, we attempted to identify patterns in the electronic structure variations as the elements change. This study provides guidance for discovering promising AM$_{3}$X$_{5}$/AM$_{6}$X$_{6}$ Kagome materials from a vast phase space.
Received: 24 August 2023      Editors' Suggestion Published: 02 November 2023
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/117101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/117101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guanghui Cai
Yutao Jiang
Hui Zhou
Ze Yu
Kun Jiang
Youguo Shi
Sheng Meng
and Miao Liu
[1] Syozi I 1951 Prog. Theor. Phys. 6 306
[2] Nocera D G, Bartlett B M, Grohol D, Papoutsakis D, and Shores M P 2004 Chem. - Eur. J. 10 3850
[3] Guguchia Z, Mielke C, Das D, Gupta R, Yin J X, Liu H, Yin Q, Christensen M H, Tu Z, Gong C, Shumiya N, Hossain M S, Gamsakhurdashvili T, Elender M, Dai P, Amato A, Shi Y, Lei H C, Fernandes R M, Hasan M Z, Luetkens H, and Khasanov R 2023 Nat. Commun. 14 153
[4] Wu Z and Wang Y 2022 Phys. Rev. B 106 214510
[5] Zhang X, Jin L, Dai X, and Liu G 2017 J. Phys. Chem. Lett. 8 4814
[6] Zhang Q, Zhang Y P, Matsuda M, Garlea V O, Yan J Q, McGuire M A, Tennant D A and Okamoto S 2022 J. Am. Chem. Soc. 144 14339
[7] Zhou H, Liu H, Ji H Y, Li X, Meng S, and Sun J T 2023 npj Quantum Mater. 8 16
[8] Chen D, Le C C, Fu C G, Lin H C, Schnelle W, Sun Y, and Felser C 2021 Phys. Rev. B 103 144410
[9] Liu E K, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125
[10] Zhao Y, Nie Z W, Hong H, Qiu X, Han S Y, Yu Y, Liu M X, Qiu X H, Liu K H, Meng S, Tong L, and Zhang J 2023 Nat. Commun. 14 2223
[11] Teng X K, Chen L, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M, and Dai P 2022 Nature 609 490
[12] Tan H X, Liu Y Z, Wang Z Q, and Yan B H 2021 Phys. Rev. Lett. 127 46401
[13] Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z, and Wang S 2021 Nat. Commun. 12 3129
[14] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X, Hu J, Gao H J, and Zhao Z 2021 Chin. Phys. Lett. 38 057403
[15] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[16] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[17] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 Nature 599 216
[18] Zheng G, Tan C, Chen Z, Wang M, Zhu X, Albarakati S, Algarni M, Partridge J, Farrar L, Zhou J, Ning W, Tian M, Fuhrer M S, and Wang L 2023 Nat. Commun. 14 678
[19] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X, and Hu J 2023 Natl. Sci. Rev. 10 nwac199
[20] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D, and Hasan M Z 2021 Nat. Mater. 20 1353
[21] Yang Y, Fan W, Zhang Q, Chen Z, Chen X, Ying T, Wu X, Yang X, Meng F, Li G, Li S, Gu L, Qian T, Schnyder A P, Guo J G, and Chen X 2021 Chin. Phys. Lett. 38 127102
[22] Li R S, Zhang T, Ma W, Xu S X, Wu Q, Yue L, Zhang S J, Liu Q M, Wang Z X, Hu T C, Zhou X Y, Wu D, Dong T, Jia S, Weng H, and Wang N L 2023 Phys. Rev. B 107 045115
[23] Jones D C, Das S, Bhandari H, Liu X, Siegfried P, Ghimire M P, Tsirkin S S, Mazin I I, and Ghimire N J 2022 arXiv:2203.17246 [cond-mat.str-el]
[24] Wenzel M, Tsirlin A A, Iakutkina O, Yin Q, Lei H C, Dressel M, and Uykur E 2022 Phys. Rev. B 106 L241108
[25] Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, and Persson K A 2015 Energy & Environ. Sci. 8 964
[26] Liu M, Jain A, Rong Z, Qu X, Canepa P, Malik R, Ceder G, and Persson K A 2016 Energy & Environ. Sci. 9 3201
[27] Sun W, Bartel C J, Arca E, Bauers S R, Matthews B, Orvañanos B, Chen B R, Toney M F, Schelhas L T, Tumas W, Tate J, Zakutayev A, Lany S, Holder A M, and Ceder G 2019 Nat. Mater. 18 732
[28] Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K, and Liu M 2022 Chin. Phys. Lett. 39 047402
[29] Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15
[30] Kresse G and Furthmu J 1996 Phys. Rev. B 54 11169
[31] Blöchl P E Phys. Rev. B 50 17953
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[34] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Jain A, Ong P, Hautier G, Chen W, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 011002
[36] Esters M, Oses C, Divilov S, Eckert H, Friedrich R, Hicks D, Mehl M J, Rose F, Smolyanyuk A, Calzolari A, Campilongo X, Toher C, and Curtarolo S 2023 Comput. Mater. Sci. 216 111808
[37] Liu M and Meng S 2023 Sci. Sin. Chim. 53 19
[38] Xie F, Lu T, Yu Z, Wang Y, Wang Z, Meng S, and Liu M 2023 Chin. Phys. Lett. 40 057401
[39] Liang Y, Chen M, Wang Y, Jia H, Lu T, Xie F, Cai G, Wang Z, Meng S, and Liu M 2023 Sci. Chin. Mater. 66 343
[40] Lu T, Wang Y, Cai G, Jia H, Liu X, Zhang C, Meng S, and Liu M 2023 Mater. Futures 2 015001
[41] Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, and Ceder G 2011 Phys. Rev. B 84 045115
[42] Ong S P, Jain A, Hautier G, Kang B, and Ceder G 2010 Electrochem. Commun. 12 427
[43] Sun W H, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, and Ceder G 2016 Sci. Adv. 2 e1600225
[44] Barber C B, Dobkin D P, and Huhdanpaa H 1996 ACM Trans. Math. Software 22 469
[45] Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403
[46] Yang Y, Wang R, Shi M Z, Wang Z, Xiang Z, and Chen X H 2021 Phys. Rev. B 104 245128
[47] E Welk H-U S 2006 Z. Anorg. Allg. Chem. 632 1917
[48] Buchholz W and Schuster H U 1978 Z. Naturforsch. B 33 877
[49] Yang H, Zhao Z, Yi X W, Liu J, You J Y, Zhang Y, Guo H, Lin X, Shen C, Chen H, Dong X, Su G, and Gao H J 2022 arXiv:2209.03840 [cond-mat.supr-con]
[50] Werhahn D, Ortiz B R, Hay A K, Wilson S D, Seshadri R, and Johrendt D 2022 Z. Naturforsch. B 77 757
[51] Li X, Xu X, Zhou H, Jia H, Wang E, Fu H, Sun J T, and Meng S 2023 Nano Lett. 23 2839
[52] Yin Q, Tu Z, Gong C, Tian S, and Lei H 2021 Chin. Phys. Lett. 38 127401
[53] Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y, Li G, Lei H, Li J, Chen Y, Yan S, and Qi Y 2021 Adv. Mater. 33 2102813
[54] Van Hove L 1953 Phys. Rev. 89 1189
[55] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H, and Hasan M Z 2015 Nat. Commun. 6 7373
[56] Qin S, Zhang Z, Wang Y, Fang C, Zhang F, and Hu J 2022 arXiv:2208.10225 [cond-mat.supr-con]
[57] Wu Z and Wang Y 2023 arXiv:2309.03285 [cond-mat.supr-con]
Related articles from Frontiers Journals
[1] Sheng Zhang, Haohao Sheng, Zhi-Da Song, Chenhao Liang, Yi Jiang, Song Sun, Quansheng Wu, Hongming Weng, Zhong Fang, Xi Dai, and Zhijun Wang. VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations[J]. Chin. Phys. Lett., 2023, 40(12): 117101
[2] Yao Wang, Zhenzhen Lei, Jinsen Zhang, Xinyong Tao, Chenqiang Hua, and Yunhao Lu. Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium[J]. Chin. Phys. Lett., 2023, 40(11): 117101
[3] Guangyu Wang, Ke Yang, Yaozhenghang Ma, Lu Liu, Di Lu, Yuxuan Zhou, and Hua Wu. Superexchange Interactions and Magnetic Anisotropy in MnPSe$_3$ Monolayer[J]. Chin. Phys. Lett., 2023, 40(7): 117101
[4] Zhiqiang Ji, Tian Huang, Ying Li, Xiaoyu Liu, Lujun Wei, Hong Wu, Jimeng Jin, Yong Pu, and Feng Li. Magnetic Phase Transition in Strained Two-Dimensional CrSeTe Monolayer[J]. Chin. Phys. Lett., 2023, 40(5): 117101
[5] Jierui Huang, Tan Zhang, Sheng Xu, Zhicheng Rao, Jiajun Li, Junde Liu, Shunye Gao, Yaobo Huang, Wenliang Zhu, Tianlong Xia, Hongming Weng, and Tian Qian. Electronic Structure of the Weak Topological Insulator Candidate Zintl Ba$_{3}$Cd$_{2}$Sb$_{4}$[J]. Chin. Phys. Lett., 2023, 40(4): 117101
[6] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 117101
[7] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 117101
[8] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 117101
[9] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 117101
[10] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 117101
[11] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 117101
[12] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 117101
[13] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 117101
[14] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 117101
[15] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 117101
Viewed
Full text


Abstract