Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 105201    DOI: 10.1088/0256-307X/40/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Global Effects on Drift Wave Microturbulence in Tokamak Plasmas
Hui Li1*, Ji-Quan Li2, and Zheng-Xiong Wang1*
1Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
2Southwestern Institute of Physics, Chengdu 610041, China
Cite this article:   
Hui Li, Ji-Quan Li, and Zheng-Xiong Wang 2023 Chin. Phys. Lett. 40 105201
Download: PDF(13863KB)   PDF(mobile)(13874KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Microturbulence excited by ion temperature gradient (ITG)-dominant and trapped electron mode (TEM)-dominant instabilities is investigated by employing an extended fluid code (ExFC) based on the so-called Landau fluid model, which includes the trapped electron dynamics. Firstly, the global effect is emphasized through direct comparison of ITG and TEM instability domains based on local and global simulations. The global effect makes differences in both linear instability and nonlinear transport, including the fluxes and the structure of zonal flow. The transitions among ITG, TEM, and ITG & TEM (ITG & TEM represents that ITG and TEM coexist with different wavelengths) instabilities/turbulence depend not only on the three key drive forces $({R/L_{\rm n}, R/L_{\rm Te}, R/L_{\rm Ti}})$ but also on their global (profile) effects. Secondly, a lot of electrostatic linear gyro-fluid simulations are concluded to obtain a distribution of the instability.
Received: 02 July 2023      Published: 26 September 2023
PACS:  52.35.Qz (Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))  
  52.65.-y (Plasma simulation)  
  52.35.Ra (Plasma turbulence)  
  52.25.Fi (Transport properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/105201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/105201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Li
Ji-Quan Li
and Zheng-Xiong Wang
[1] Horton W 1999 Rev. Mod. Phys. 71 735
[2] Peeters A G, Angioni C, Apostoliceanu M, Pereverzev G V, Quigley E, Ryter F, Strintzi D, Jenko F, Fahrbach U, Fuchs C, Gehre O, Hobirk J, Kurzan B, Maggi C F, Manini A, McCarthy P J, Meister H, and Schweinzer J 2005 Nucl. Fusion 45 1140
[3] Maeyama S, Idomura Y, Watanabe T H, Nakata M, and Nunami M 2015 Phys. Rev. Lett. 114 255002
[4] Xu J Q, Peng X D, Qu H P, and Hao G 2020 Chin. Phys. Lett. 37 062801
[5] Wei L, Wang Z X, Li J Q, Hu Z Q, and Kishimoto Y 2019 Chin. Phys. B 28 12
[6] Hoang G T, Bourdelle C, Garbet X, Pegourie B, Artaud J F, Basiuk V, Bucalossi J, FenziBonizec C, Clairet F, Eriksson L G, Gil C, Guirlet R, Imbeaux F, Lasalle J, Lowry C, Schunke B, Segui J L, Travere J M, Tsitrone E, and Vermare L 2006 Nucl. Fusion 46 306
[7] Petty C C and Luce T C 1994 Nucl. Fusion 34 121
[8] Dong J Q and Horton W 1995 Phys. Plasmas 2 3412
[9] Hu W, Feng H Y, and Zhang W L 2019 Chin. Phys. Lett. 36 085201
[10] Sun T T, Chen S Y, Wang Z H, Peng X D, Huang J, Mou M L, and Tang C J 2015 Chin. Phys. Lett. 32 035201
[11] Xiao Y and Lin Z 2009 Phys. Rev. Lett. 103 085004
[12] Dimit A M, Bateman G, Beer M A, Cohen B I, Dorl W, Hammett G W, Kim C, Kinsey J E, Kotschenreuther M, Kritz A H, Lao L L, Mandrekas J, Nevins W M, Parker S E, Redd A J, Shumaker D E, Sydora R, and Weiland J 2000 Phys. Plasmas 7 969
[13] Vlad M, Spineanu F, Itoh S I, Yagi M, and Itoh K 2005 Plasma Phys. Control. Fusion 47 1015
[14] Zhang W, Lin Z, and Chen L 2008 Phys. Rev. Lett. 101 095001
[15] Heidbrink W W, Park J M, Murakami M, Petty C C, Holcomb C, and van Zeeland M A 2009 Phys. Rev. Lett. 103 175001
[16] Mariani A, Brunner S, Dominski J, Merle A, Merlo G, Sauter O, Görler T, Jenko F, and Told D 2018 Phys. Plasmas 25 012313
[17] Mordijck S, Wang X, Doyle E J, Rhodes T L, Schmitz L, Zeng L, Staebler G M, Petty C C, Groebner R J, Ko W H, Grierson B A, Solomon W M, Tala T, Salmi A, Chrystal C, Diamond P, and McKee G R 2015 Nucl. Fusion 55 113025
[18] Mordijck S, Rhodes T L, Zeng L, Salmi A, Tala T, Petty C C, McKee G R, Reksoatmodjo R, Eriksson F, Fransson E, and Nordman H 2020 Nucl. Fusion 60 066019
[19] Ryter F, Angioni C, Dunne M, Fischer R, Kurzan B, Lebschy A, McDermott R M, Suttrop W, Tardini G, Viezzer E, Willensdorfer M, and the ASDEX Upgrade Team 2019 Nucl. Fusion 59 096052
[20] Angioni C, Lang P T, Manas P 2017 Nucl. Fusion 57 116053
[21] Duval B P, Bortolon A, Karpushov A, Pitts R A, Pochelon A, Sauter O, Scarabosio A, Turri G, and the TCV Team 2008 Phys. Plasmas 15 056113
[22] Rice J E, Duval B P, Reinke M L, Podpaly Y A, Bortolon A, Churchill R M, Cziegler I, Diamond P H, Dominguez A, Ennever P C, Fiore C L, Granetz R S, Greenwald M J, Hubbard A E, Hughes J W, Irby J H, Ma Y, Marmar E S, McDermott R M, Porkolab M, Tsujii, and Wolfe S M 2011 Nucl. Fusion 51 083005
[23] Mcdermott R M, Angioni C, Conway G D, Dux R, Fable E, Fischer R, Putterich T, Ryter F, Viezzer E, and the ASDEX Upgrade Team 2014 Nucl. Fusion 54 043009
[24] Candy J 2005 Phys. Plasmas 12 072307
[25] Snyder P B and Hammett G W 2001 Phys. Plasmas 8 744
[26] Kinsey J E, Waltz R E, and Candy J 2006 Phys. Plasmas 13 022305
[27] Mariani A, Brunner S, Merlo G, Sauter O 2019 Plasma Phys. Control. Fusion 61 064005
[28] Hu W, Feng H Y, and Dong C 2018 Chin. Phys. Lett. 35 105201
[29] Alcusón J A, Xanthopoulos P, Plunk G G, Helander P, Wilms F, Turkin Y, von Stechow A, and Grulke O 2020 Plasma Phys. Control. Fusion 62 035005
[30] Doyle E J, Houlberg W A, Kamada Y, Mukhovatov V, Osborne T H, Polevoi A, Bateman G, Connor J W, Cordey J G, and Fujita T 2007 Nucl. Fusion 47 S18
[31] Navarro A B, Told D, Jenko F, Grler T, Happel T, and ASDEX Upgrade Team 2016 Phys. Plasmas 23 042312
[32] Miyata S, Li J, Imadera K, and Kishimoto Y 2011 J. Plasma Fusion Res. 6 2403113
[33] Merlo G, Huang Z, Marini C, Brunner S, Coda S, Hatch D, Jarema D, Jenko F, Sauter O, and Villard L 2021 Plasma Phys. Control. Fusion 63 044001
[34] Chai S, Xu Y H, Gao Z, Wang W H, Liu Y Q, and Tan Y 2017 Chin. Phys. Lett. 34 025201
[35] Li H, Li J Q, Fu Y L, Wang Z X, and Jiang M 2022 Nucl. Fusion 62 036014
[36] Li H, Fu Y, Li J, and Wang Z 2021 Plasma Sci. Technol. 23 115102
[37] Miyato N, Kishimoto Y, and Li J Q 2007 Nucl. Fusion 47 929
Related articles from Frontiers Journals
[1] Jun Guo. A Particle-in-Cell Simulation Study on Harmonic Waves Excited by Electron Beams in Unmagnetized Plasmas[J]. Chin. Phys. Lett., 2016, 33(08): 105201
[2] WANG Guan-Qiong, MA Jun, WEILAND J., ZAGORODNY A.. Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance[J]. Chin. Phys. Lett., 2015, 32(11): 105201
[3] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, CAI Hong. Large Bi-Polar Signature in a Perpendicular Electric Field of Two-Dimensional Electrostatic Solitary Waves Associated with Magnetic Reconnection: Statistics and Discussion[J]. Chin. Phys. Lett., 2013, 30(1): 105201
[4] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, and CAI Hong. Spatial Evolution of Electrostatic Solitary Waves along Plasma Sheet Boundary Layer Adjacent to the Magnetic Reconnection X-Line[J]. Chin. Phys. Lett., 2012, 29(8): 105201
[5] GUO Jun, YU Bin. Competition between Buneman and Langmuir Instabilities[J]. Chin. Phys. Lett., 2012, 29(3): 105201
[6] PENG Li-Li, GAO Zhe. Effect of Elongation on Critical Gradient for Toroidal Electron Temperature Gradient Modes[J]. Chin. Phys. Lett., 2008, 25(11): 105201
[7] CHEN Zhong-Yong, WAN Bao-Nian, LING Bi-Li, GAO Xiang, DU Qin, TI Ang, LIN Shi-Yao, S. Sajjad, HT- Team. Runaway Electron Beam Instability in Slide-Away Discharges in the HT-7 Tokamak[J]. Chin. Phys. Lett., 2007, 24(11): 105201
[8] WANG Ying, GAO Zhe. Short Wavelength Ion Temperature Gradient Driven Instability in Noncircular Flux Surface Plasmas with Finite Aspect Ratio[J]. Chin. Phys. Lett., 2006, 23(8): 105201
[9] CAI Hong-Bo, ZHU Shao-Ping, ZHENG Chun-Yang, HE Xian-Tu, LI Ji-Wei. Effects of Beam Energy Spread on the Weibel Instability in Fast Ignitor Scenarios[J]. Chin. Phys. Lett., 2006, 23(1): 105201
[10] LIU Feng, DONG Jia-Qi, GAO Zhe. Electron Temperature Gradient Driven Instability in High Beta Plasmas of a Sheared Slab[J]. Chin. Phys. Lett., 2005, 22(5): 105201
[11] GAO Zhe. A New Kinetic Mode Driven by Electron Temperature Gradient[J]. Chin. Phys. Lett., 2004, 21(5): 105201
[12] LU Quan-Ming, WANG Lian-Qi, ZHOU Yan, WANG Shui. Electromagnetic Instabilities Excited by Electron Temperature Anisotropy[J]. Chin. Phys. Lett., 2004, 21(1): 105201
[13] DONG Li-Fang, HE Ya-Feng, YIN Zeng-Qian, CHAI Zhi-Fang. Experimental Observation of Traveling Hexagon Patterns in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2003, 20(9): 105201
[14] PAN Yuan, YAN Xiao-Lin, LIU Bao-Hua. Electron Injection by E-Field Drift and its Application in Starting-up Tokamaks at Low Loop Voltage[J]. Chin. Phys. Lett., 2003, 20(5): 105201
[15] YIN Yan, CHANG Wen-Wei, MA Yan-Yun, YUE Zong-Wu, CAO Li-Hua. Current Filamentation and Resonant Transport of the Relativistic-Electron-Beam in Dense Plasmas[J]. Chin. Phys. Lett., 2002, 19(3): 105201
Viewed
Full text


Abstract