Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 097101    DOI: 10.1088/0256-307X/39/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method
Y. E. Huang1, F. Wu1, A. Wang1, Y. Chen1, L. Jiao1, M. Smidman1,2, and H. Q. Yuan1,2,3,4*
1Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China
2Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China
3State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Cite this article:   
Y. E. Huang, F. Wu, A. Wang et al  2022 Chin. Phys. Lett. 39 097101
Download: PDF(2585KB)   PDF(mobile)(2588KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A central research topic in condensed matter physics is the understanding of the evolution of various phases and phase transitions under different tuning parameters such as temperature, magnetic field and pressure. To explore the pressure-induced evolution of the magnetism and Fermi surface of the heavy fermion antiferromagnet YbPtBi, we performed tunnel diode oscillator based measurements under pressure at low temperatures in high magnetic fields. Our results reveal that the magnetic order strengthens and the Fermi surface shrinks as the pressure increases, which are consistent with typical observations for Yb-based heavy fermion compounds. In addition, an anomalous change in the quantum oscillation amplitudes is observed above 1.5 GPa, and determining the origin requires further study.
Received: 10 June 2022      Published: 15 August 2022
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.62.Fj (Effects of pressure)  
  74.70.Ad (Metals; alloys and binary compounds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/097101       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/097101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Y. E. Huang
F. Wu
A. Wang
Y. Chen
L. Jiao
M. Smidman
and H. Q. Yuan
[1] Gegenwart P, Si Q, and Steglich F 2008 Nat. Phys. 4 186
[2] Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, and Eremets M 2021 Nat. Rev. Phys. 3 462
[3] Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G, and Qi Y 2020 Chin. Phys. Lett. 37 066401
[4] Xia X B, Shen B, Smidman M, Chen Y, Lee H, and Yuan H Q 2018 Chin. Phys. Lett. 35 067102
[5] Xu J C, Su H, Kumar R, Luo S S, Nie Z Y, Wang A, Du F, Li R, Smidman M, and Yuan H Q 2021 Chin. Phys. Lett. 38 087101
[6] Fisk Z, Canfield P C, Beyermann W P, Thompson J D, Hundley M F, Ott H R, Felder E, Maple M B, de Lopez L T M A, Visani P, and Seaman C L 1991 Phys. Rev. Lett. 67 3310
[7] Mun E D, Bud'ko S L, Martin C, Kim H, Tanatar M A, Park J H, Murphy T, Schmiedeshoff G M, Dilley N, Prozorov R, and Canfield P C 2013 Phys. Rev. B 87 075120
[8] Ueland B G, Kreyssig A, Mun E D, Lynn J W, Harriger L W, Pratt D K, Prokeš K, Hüsges Z, Toft-Petersen R, Sauerbrei S, Saunders S M, Furukawa Y, Bud'ko S L, McQueeney R J, Canfield P C, and Goldman A I 2019 Phys. Rev. B 99 184431
[9] Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F, and Yuan H Q 2018 Nat. Commun. 9 4622
[10] Guo C, Wu F, Smidman M, and Yuan H 2018 AIP Adv. 8 101336
[11] Lacerda A, Movshovich R, Hundley M F, Canfield P C, Arms D, Sparn G, Thompson J D, Fisk Z, Fisher R A, Phillips N E, and Ott H R 1993 J. Appl. Phys. 73 5415
[12] Van Degrift C T 1975 Rev. Sci. Instrum. 46 599
[13] Van Degrift C T and Love D P 1981 Rev. Sci. Instrum. 52 712
[14] Prozorov R and Giannetta R W 2006 Supercond. Sci. Technol. 19 R41
[15] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M, and Salamon M B 2006 Phys. Rev. Lett. 97 017006
[16] Weng Z F, Zhang J L, Smidman M, Shang T, Quintanilla J, Annett J F, Nicklas M, Pang G M, Jiao L, Jiang W B, Chen Y, Steglich F, and Yuan H Q 2016 Phys. Rev. Lett. 117 027001
[17] Pang G, Smidman M, Zhang J, Jiao L, Weng Z, Nica E M, Chen Y, Jiang W, Zhang Y, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q, and Yuan H 2018 Proc. Natl. Acad. Sci. USA 115 5343
[18] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y, and Yuan H 2021 Sci. Chin. Phys. Mech. & Astron. 64 107462
[19] Coffey T, Bayindir Z, DeCarolis J F, Bennett M, Esper G, and Agosta C C 2000 Rev. Sci. Instrum. 71 4600
[20] Sebastian S E, Harrison N, Liang R, Bonn D A, Hardy W N, Mielke C H, and Lonzarich G G 2012 Phys. Rev. Lett. 108 196403
[21] Wang A, Du F, Zhang Y, Graf D, Shen B, Chen Y, Liu Y, Smidman M, Cao C, Steglich F, and Yuan H 2021 Sci. Bull. 66 1389
[22] Lin W C, Campbell D J, Ran S, Liu I L, Kim H, Nevidomskyy A H, Graf D, Butch N P, and Paglione J 2020 npj Quantum Mater. 5 68
[23] Ran S, Saha S R, Liu I L, Graf D, Paglione J, and Butch N P 2021 npj Quantum Mater. 6 75
[24]Zhang J 2014 Ph.D. Dissertation (Hangzhou: Zhejiang University)
[25] Clover R B and Wolf W P 1970 Rev. Sci. Instrum. 41 617
[26] Vannette M D, Sefat A S, Jia S, Law S A, Lapertot G, Bud'ko S L, Canfield P C, Schmalian J, and Prozorov R 2008 J. Magn. Magn. Mater. 320 354
[27] Prozorov R, Giannetta R W, Carrington A, and Araujo-Moreira F M 2000 Phys. Rev. B 62 115
[28] Yuan H Q, Nicklas M, Hossain Z, Geibel C, and Steglich F 2006 Phys. Rev. B 74 212403
[29] Jiang W B, Yang L, Guo C Y, Hu Z, Lee J M, Smidman M, Wang Y F, Shang T, Cheng Z W, Gao F, Ishii H, Tsuei K D, Liao Y F, Lu X, Tjeng L H, Chen J M, and Yuan H Q 2015 Sci. Rep. 5 17608
[30] Salamatin D A, Sidorov V A, Chtchelkatchev N M, Magnitskaya M V, Martin N, Petrova A E, Fomicheva L N, Guo J, Huang C, Zhou Y, Sun L, and Tsvyashchenko A V 2021 Phys. Rev. B 103 235139
[31] Matsubayashi K, Hirayama T, Yamashita T, Ohara S, Kawamura N, Mizumaki M, Ishimatsu N, Watanabe S, Kitagawa K, and Uwatoko Y 2015 Phys. Rev. Lett. 114 086401
[32] Mun E, Bud'ko S L, Lee Y, Martin C, Tanatar M A, Prozorov R, and Canfield P C 2015 Phys. Rev. B 92 085135
[33]Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
[34] Wu F, Guo C, Smidman M, Zhang J, Chen Y, Singleton J, and Yuan H 2019 npj Quantum Mater. 4 20
[35] Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein M, Kiourlappou M, Srivastava A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G, and Sebastian S E 2015 Science 349 287
[36] Shishido H, Yamada S, Sugii K, Shimozawa M, Yanase Y, and Yamashita M 2018 Phys. Rev. Lett. 120 177201
[37] Mashhadi S, Kim Y, Kim J, Weber D, Taniguchi T, Watanabe K, Park N, Lotsch B, Smet J H, Burghard M, and Kern K 2019 Nano Lett. 19 4659
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 097101
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 097101
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 097101
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 097101
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 097101
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 097101
[7] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 097101
[8] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 097101
[9] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 097101
[10] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 097101
[11] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 097101
[12] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 097101
[13] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 097101
[14] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 097101
[15] Guoxiong Tang, Libin Wen, Hui Xing, Wenjie Liu, Jin Peng, Yu Wang, Yupeng Li, Baijiang Lv, Yusen Yang, Chao Yao, Yueshen Wu, Hong Sun, Zhu-An Xu, Zhiqiang Mao, and Ying Liu. Structural Domain Imaging and Direct Determination of Crystallographic Orientation in Noncentrosymmetric Ca$_{3}$Ru$_{2}$O$_{7}$ Using Polarized Light Reflectance[J]. Chin. Phys. Lett., 2020, 37(10): 097101
Viewed
Full text


Abstract