CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method |
Y. E. Huang1, F. Wu1, A. Wang1, Y. Chen1, L. Jiao1, M. Smidman1,2, and H. Q. Yuan1,2,3,4* |
1Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China 2Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China 3State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China 4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
|
|
Cite this article: |
Y. E. Huang, F. Wu, A. Wang et al 2022 Chin. Phys. Lett. 39 097101 |
|
|
Abstract A central research topic in condensed matter physics is the understanding of the evolution of various phases and phase transitions under different tuning parameters such as temperature, magnetic field and pressure. To explore the pressure-induced evolution of the magnetism and Fermi surface of the heavy fermion antiferromagnet YbPtBi, we performed tunnel diode oscillator based measurements under pressure at low temperatures in high magnetic fields. Our results reveal that the magnetic order strengthens and the Fermi surface shrinks as the pressure increases, which are consistent with typical observations for Yb-based heavy fermion compounds. In addition, an anomalous change in the quantum oscillation amplitudes is observed above 1.5 GPa, and determining the origin requires further study.
|
|
Received: 10 June 2022
Published: 15 August 2022
|
|
PACS: |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
|
|
|
[1] | Gegenwart P, Si Q, and Steglich F 2008 Nat. Phys. 4 186 |
[2] | Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, and Eremets M 2021 Nat. Rev. Phys. 3 462 |
[3] | Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G, and Qi Y 2020 Chin. Phys. Lett. 37 066401 |
[4] | Xia X B, Shen B, Smidman M, Chen Y, Lee H, and Yuan H Q 2018 Chin. Phys. Lett. 35 067102 |
[5] | Xu J C, Su H, Kumar R, Luo S S, Nie Z Y, Wang A, Du F, Li R, Smidman M, and Yuan H Q 2021 Chin. Phys. Lett. 38 087101 |
[6] | Fisk Z, Canfield P C, Beyermann W P, Thompson J D, Hundley M F, Ott H R, Felder E, Maple M B, de Lopez L T M A, Visani P, and Seaman C L 1991 Phys. Rev. Lett. 67 3310 |
[7] | Mun E D, Bud'ko S L, Martin C, Kim H, Tanatar M A, Park J H, Murphy T, Schmiedeshoff G M, Dilley N, Prozorov R, and Canfield P C 2013 Phys. Rev. B 87 075120 |
[8] | Ueland B G, Kreyssig A, Mun E D, Lynn J W, Harriger L W, Pratt D K, Prokeš K, Hüsges Z, Toft-Petersen R, Sauerbrei S, Saunders S M, Furukawa Y, Bud'ko S L, McQueeney R J, Canfield P C, and Goldman A I 2019 Phys. Rev. B 99 184431 |
[9] | Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F, and Yuan H Q 2018 Nat. Commun. 9 4622 |
[10] | Guo C, Wu F, Smidman M, and Yuan H 2018 AIP Adv. 8 101336 |
[11] | Lacerda A, Movshovich R, Hundley M F, Canfield P C, Arms D, Sparn G, Thompson J D, Fisk Z, Fisher R A, Phillips N E, and Ott H R 1993 J. Appl. Phys. 73 5415 |
[12] | Van Degrift C T 1975 Rev. Sci. Instrum. 46 599 |
[13] | Van Degrift C T and Love D P 1981 Rev. Sci. Instrum. 52 712 |
[14] | Prozorov R and Giannetta R W 2006 Supercond. Sci. Technol. 19 R41 |
[15] | Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M, and Salamon M B 2006 Phys. Rev. Lett. 97 017006 |
[16] | Weng Z F, Zhang J L, Smidman M, Shang T, Quintanilla J, Annett J F, Nicklas M, Pang G M, Jiao L, Jiang W B, Chen Y, Steglich F, and Yuan H Q 2016 Phys. Rev. Lett. 117 027001 |
[17] | Pang G, Smidman M, Zhang J, Jiao L, Weng Z, Nica E M, Chen Y, Jiang W, Zhang Y, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q, and Yuan H 2018 Proc. Natl. Acad. Sci. USA 115 5343 |
[18] | Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y, and Yuan H 2021 Sci. Chin. Phys. Mech. & Astron. 64 107462 |
[19] | Coffey T, Bayindir Z, DeCarolis J F, Bennett M, Esper G, and Agosta C C 2000 Rev. Sci. Instrum. 71 4600 |
[20] | Sebastian S E, Harrison N, Liang R, Bonn D A, Hardy W N, Mielke C H, and Lonzarich G G 2012 Phys. Rev. Lett. 108 196403 |
[21] | Wang A, Du F, Zhang Y, Graf D, Shen B, Chen Y, Liu Y, Smidman M, Cao C, Steglich F, and Yuan H 2021 Sci. Bull. 66 1389 |
[22] | Lin W C, Campbell D J, Ran S, Liu I L, Kim H, Nevidomskyy A H, Graf D, Butch N P, and Paglione J 2020 npj Quantum Mater. 5 68 |
[23] | Ran S, Saha S R, Liu I L, Graf D, Paglione J, and Butch N P 2021 npj Quantum Mater. 6 75 |
[24] | Zhang J 2014 Ph.D. Dissertation (Hangzhou: Zhejiang University) |
[25] | Clover R B and Wolf W P 1970 Rev. Sci. Instrum. 41 617 |
[26] | Vannette M D, Sefat A S, Jia S, Law S A, Lapertot G, Bud'ko S L, Canfield P C, Schmalian J, and Prozorov R 2008 J. Magn. Magn. Mater. 320 354 |
[27] | Prozorov R, Giannetta R W, Carrington A, and Araujo-Moreira F M 2000 Phys. Rev. B 62 115 |
[28] | Yuan H Q, Nicklas M, Hossain Z, Geibel C, and Steglich F 2006 Phys. Rev. B 74 212403 |
[29] | Jiang W B, Yang L, Guo C Y, Hu Z, Lee J M, Smidman M, Wang Y F, Shang T, Cheng Z W, Gao F, Ishii H, Tsuei K D, Liao Y F, Lu X, Tjeng L H, Chen J M, and Yuan H Q 2015 Sci. Rep. 5 17608 |
[30] | Salamatin D A, Sidorov V A, Chtchelkatchev N M, Magnitskaya M V, Martin N, Petrova A E, Fomicheva L N, Guo J, Huang C, Zhou Y, Sun L, and Tsvyashchenko A V 2021 Phys. Rev. B 103 235139 |
[31] | Matsubayashi K, Hirayama T, Yamashita T, Ohara S, Kawamura N, Mizumaki M, Ishimatsu N, Watanabe S, Kitagawa K, and Uwatoko Y 2015 Phys. Rev. Lett. 114 086401 |
[32] | Mun E, Bud'ko S L, Lee Y, Martin C, Tanatar M A, Prozorov R, and Canfield P C 2015 Phys. Rev. B 92 085135 |
[33] | Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press) |
[34] | Wu F, Guo C, Smidman M, Zhang J, Chen Y, Singleton J, and Yuan H 2019 npj Quantum Mater. 4 20 |
[35] | Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein M, Kiourlappou M, Srivastava A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G, and Sebastian S E 2015 Science 349 287 |
[36] | Shishido H, Yamada S, Sugii K, Shimozawa M, Yanase Y, and Yamashita M 2018 Phys. Rev. Lett. 120 177201 |
[37] | Mashhadi S, Kim Y, Kim J, Weber D, Taniguchi T, Watanabe K, Park N, Lotsch B, Smet J H, Burghard M, and Kern K 2019 Nano Lett. 19 4659 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|