ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy |
Canzhu Tan1,2, Fachao Hu1,2, Zhijing Niu1,2†, Yuhai Jiang2,3*, Matthias Weidemüller1,2,4*, and Bing Zhu2,4,5* |
1Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China 2CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 3Center for Transformative Science and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 4Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany 5HSBC Lab-China, Guangzhou 510620, China
|
|
Cite this article: |
Canzhu Tan, Fachao Hu, Zhijing Niu et al 2022 Chin. Phys. Lett. 39 093202 |
|
|
Abstract We report on experimental measurements of the transition dipole moments (TDMs) between the intermediate state $5{s}5{p}\, ^3\!{P}_1$ and the triplet Rydberg series $5{s}n{s}\, ^3\!{S}_1$ in an ultracold strontium gas. Here $n$ is the principal quantum number ranging from 19 to 40. The transition $5{s}5{p}\, ^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ is coupled via an ultraviolet (UV) beam, inducing Autler–Townes splitting of both states. Such a splitting of the intermediate state is spectroscopically measured by using absorption imaging on a narrow transition $5{s^2}\, ^1{S}_0$–$5{s}5{p}\, ^3\!{P}_1$ in an ultracold gas of strontium atoms. The power and size of the UV beam are carefully determined, with which the TDMs are extracted from the measured Autler–Townes splitting. The experimentally obtained TDMs are compared to the calculations based on a parametric core potential, on a Coulomb potential with quantum defect, and on the open-source library Alkali Ryderg calculator, finding good agreement with the former two models and significant deviation with the latter.
|
|
Received: 30 June 2022
Published: 29 August 2022
|
|
PACS: |
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
32.80.Ee
|
(Rydberg states)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
|
|
|
[1] | Gallagher T F 2005 Rydberg Atoms (Cambridge: Cambridge University Press) |
[2] | Browaeys A and Lahaye T 2020 Nat. Phys. 16 132 |
[3] | Altman E, Brown K R, Carleo G, Carr L D, Demler E, Chin C, DeMarco B, Economou S E, Eriksson M A, Fu K M C, Greiner M, Hazzard K R, Hulet R G, Kollár A J, Lev B L, Lukin M D, Ma R, Mi X, Misra S, Monroe C, Murch K, Nazario Z, Ni K K, Potter A C, Roushan P, Saffman M, Schleier-Smith M, Siddiqi I, Simmonds R, Singh M, Spielman I, Temme K, Weiss D S, Vučković J, Vuletić V, Ye J, and Zwierlein M 2021 PRX Quantum 2 017003 |
[4] | Saffman M, Walker T G, and Mølmer K 2010 Rev. Mod. Phys. 82 2313 |
[5] | Adams C S, Pritchard J D, and Shaffer J P 2020 J. Phys. B 53 012002 |
[6] | White H E 1934 Introduction to Atomic Spectra (New York: McGraw-Hill) |
[7] | Šibalić N, Pritchard J D, Adams C S, and Weatherill K J 2017 Comput. Phys. Commun. 220 319 |
[8] | Weber S, Tresp C, Menke H, Urvoy A, Firstenberg O, Büchler H P, and Hofferberth S 2017 J. Phys. B 50 133001 |
[9] | Dunning F B, Killian T C, Yoshida S, and Burgdörfer J 2016 J. Phys. B 49 112003 |
[10] | Seaton M J 2002 Comput. Phys. Commun. 146 225 |
[11] | Marinescu M, Sadeghpour H R, and Dalgarno A 1994 Phys. Rev. A 49 982 |
[12] | Oumarou B, Picart J, Minh N T, and Chapelle J 1988 Phys. Rev. A 37 1885 |
[13] | Millen J, Lochead G, Corbett G R, Potvliege R M, and Jones M P A 2011 J. Phys. B 44 184001 |
[14] | Vaillant C L, Jones M P A, and Potvliege R M 2012 J. Phys. B 45 135004 |
[15] | Ye S, Zhang X, Killian T C, Dunning F B, Hiller M, Yoshida S, Nagele S, and Burgdörfer J 2013 Phys. Rev. A 88 043430 |
[16] | Vaillant C L, Jones M P A, and Potvliege R M 2014 J. Phys. B 47 155001 |
[17] | Piotrowicz M J, MacCormick C, Kowalczyk A, Bergamini S, Beterov I I, and Yakshina E A 2011 New J. Phys. 13 093012 |
[18] | Hu F, Tan C, Jiang Y, Weidemüller M, and Zhu B 2022 Chin. Phys. B 31 016702 |
[19] | Zhang H, Wang L, Chen J, Bao S, Zhang L, Zhao J, and Jia S 2013 Phys. Rev. A 87 033835 |
[20] | Ahmed E H, Huennekens J, Kirova T, Qi J, and Lyyra A M 2012 Advances in Atomic, Molecular, and Optical Physics (Amsterdam: Elsevier) vol 61 pp 467–514 |
[21] | Sobelman I I 1992 Atomic Spectra and Radiative Transitions (Berlin: Springer) |
[22] | Nosske I, Couturier L, Hu F, Tan C, Qiao C, Blume J, Jiang Y H, Chen P, and Weidemüller M 2017 Phys. Rev. A 96 053415 |
[23] | Hu F, Nosske I, Couturier L, Tan C, Qiao C, Chen P, Jiang Y H, Zhu B, and Weidemüller M 2019 Phys. Rev. A 99 033422 |
[24] | Qiao C, Tan C Z, Hu F C, Couturier L, Nosske I, Chen P, Jiang Y H, Zhu B, and Weidemüller M 2019 Appl. Phys. B 125 215 |
[25] | Couturier L, Nosske I, Hu F, Tan C, Qiao C, Jiang Y H, Chen P, and Weidemüller M 2019 Phys. Rev. A 99 022503 |
[26] | Aman J A, DeSalvo B J, Dunning F B, Killian T C, Yoshida S, and Burgdörfer J 2016 Phys. Rev. A 93 043425 |
[27] | DeSalvo B J, Aman J A, Gaul C, Pohl T, Yoshida S, Burgdörfer J, Hazzard K R A, Dunning F B, and Killian T C 2016 Phys. Rev. A 93 022709 |
[28] | Fleischhauer M, Imamoglu A, and Marangos J P 2005 Rev. Mod. Phys. 77 633 |
[29] | Klapisch M 1971 Comput. Phys. Commun. 2 239 |
[30] | Millen J 2011 A Cold Strontium Rydberg Gas, Ph.D. thesis (Durham University) |
[31] | Johnson B R 1977 J. Chem. Phys. 67 4086 |
[32] | Robertson E J, Šibalić N, Potvliege R M, and Jones M P A 2021 Comput. Phys. Commun. 261 107814 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|