ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Manipulating Nonsequential Double Ionization of Argon Atoms via Orthogonal Two-Color Field |
Yingbin Li1†, Lingling Qin1†, Aihua Liu2,7*, Ke Zhang1, Qingbin Tang1, Chunyang Zhai1, Jingkun Xu3*, Shi Chen4, Benhai Yu1*, and Jing Chen5,6 |
1College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China 2Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China 3School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China 4Center for Applied Physics and Technology, HEDPS, and School of Physics, Peking University, Beijing 100871, China 5Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 6Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China 7State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences, Xi'an 710119, China
|
|
Cite this article: |
Yingbin Li, Lingling Qin, Aihua Liu et al 2022 Chin. Phys. Lett. 39 093201 |
|
|
Abstract Using a three-dimensional classical ensemble model, we investigate the dependence of relative frequency and relative initial phase for nonsequential double ionization (NSDI) of atoms driven by orthogonal two-color (OTC) fields. Our findings reveal that the NSDI probability is clearly dependent on the relative initial phase of OTC fields at different relative frequencies. The inversion analysis results indicate that adjusting the relative frequency of OTC fields helps control returning probability and flight time of the first electron. Furthermore, manipulating the relative frequency at the same relative initial phases can vary the revisit time of the recolliding electron, leading that the emission direction of Ar$^{2+}$ ions is explicitly dependent on the relative frequency.
|
|
Received: 17 June 2022
Published: 06 August 2022
|
|
PACS: |
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
34.50.Rk
|
(Laser-modified scattering and reactions)
|
|
32.80.Wr
|
(Other multiphoton processes)
|
|
|
|
|
[1] | McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595 |
[2] | Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 |
[3] | Zhai C Y, Zhu X S, Long J, Shao R Z, Zhang Y F, He L X, Tang Q B, Li Y B, Lan P F, Yu B H, and Lu P X 2021 Phys. Rev. A 103 033114 |
[4] | Paulus G G, Nicklich W, Huale X, Lambropoulos P, and Walther H 1994 Phys. Rev. Lett. 72 2851 |
[5] | Becker W, Grasbon F, Kopold R, Miloševic D B, Paulus G G, and Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35 |
[6] | Huang X F, Su J, Liao J Y, Li Y B, and Huang C 2022 Acta Phys. Sin. 71 093202 (in Chinese) |
[7] | Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, and Huang C 2022 Opt. Express 30 24898 |
[8] | Xu J K, Li Y B, Zhou Y M, Chen Y K, Li M, Yu B H, and Lu P X 2022 Opt. Express 30 15951 |
[9] | Chen Z H, Su J, Zeng X, Huang X F, Li Y B, and Huang C 2021 Opt. Express 29 29576 |
[10] | Fittinghoff D N, Bolton P R, Chang B, and Kulander K C 1992 Phys. Rev. Lett. 69 2642 |
[11] | Walker B, Sheehy B, Dimauro L F, Agostini P, Schafer K J, and Kulander K C 1994 Phys. Rev. Lett. 73 1227 |
[12] | Chen J, Liu J, Fu L B, and Zheng W M 2000 Phys. Rev. A 63 011404 |
[13] | Fu L B, Xin G G, Ye D F, and Liu J 2012 Phys. Rev. Lett. 108 103601 |
[14] | Corkum P B 1993 Phys. Rev. Lett. 71 1994 |
[15] | Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A, and Dörner R 2007 Phys. Rev. Lett. 99 263002 |
[16] | Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo L U J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, and Sandner W 2001 Phys. Rev. Lett. 87 043003 |
[17] | Kang H P, Chen S, Wang Y L, Chu W, Yao J P, Chen J, Liu X J, Cheng Y, and Xu Z Z 2019 Phys. Rev. A 100 033403 |
[18] | Liao Q, Lu P X, Zhang Q B, Yang Z Y, and Wang X B 2008 Opt. Express 16 17070 |
[19] | Baltuška A, Th U, Uiberacker M, Hentschel M, Goulielmakis E, Ch G, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, and Krausz F 2003 Nature 421 611 |
[20] | Liu X and de Figueira M F C 2004 Phys. Rev. Lett. 92 133006 |
[21] | Zhao X, Chen J, Fu P M, Liu X S, Yan Z C, and Wang B B 2013 Phys. Rev. A 87 043411 |
[22] | Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, and Wu J 2017 Phys. Rev. Lett. 119 203202 |
[23] | Jin F C, Tian Y Y, Chen J, Yang Y J, Liu X J, Yan Z C, and Wang B B 2016 Phys. Rev. A 93 043417 |
[24] | Li Y B, Xu J K, Chen H M, Li Y H, He J J, Qin L L, Shi L K, Zhao Y G, Tang Q B, Zhai C Y, and Yu B H 2021 Opt. Commun. 493 127019 |
[25] | Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, and Nam C H 2005 Phys. Rev. Lett. 94 243901 |
[26] | Brugnera L, Hoffmann D J, Siegel T, Frank F, Zaïr A, Tisch J W G, and Marangos J P 2011 Phys. Rev. Lett. 107 153902 |
[27] | Gong X C, He P L, Song Q Y, Ji Q Y, Pan H F, Ding J X, He F, Zeng H P, and Wu J 2014 Phys. Rev. Lett. 113 203001 |
[28] | Richter M, Kunitski M, Schöffler M, Jahnke T, Schmidt L P H, Li M, Liu Y Q, and Dörner R 2015 Phys. Rev. Lett. 114 143001 |
[29] | Han M, Ge P P, Shao Y, Liu M M, Deng Y K, Wu C Y, Gong Q H, and Liu Y Q 2017 Phys. Rev. Lett. 119 073201 |
[30] | Kitzler M, Xie X H, Scrinzi A, and Baltuska A 2007 Phys. Rev. A 76 011801 |
[31] | Kitzler M, Xie X H, Roither S, Scrinzi A, and Baltuska A 2008 New J. Phys. 10 025029 |
[32] | Zhou Y M, Liao Q, and Lu P X 2009 Phys. Rev. A 80 023412 |
[33] | Yuan Z Q, Ye D F, Xia Q Z, Liu J, and Fu L B 2015 Phys. Rev. A 91 063417 |
[34] | Zhou Y M, Huang C, Liao Q, Hong W Y, and Lu P X 2011 Opt. Lett. 36 2758 |
[35] | Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schöffler M, Shafir D, Corkum P B, Baltuška A, Staudte A, and Kitzler M 2014 Phys. Rev. Lett. 112 193002 |
[36] | Liu M M, Han M, Ge P P, He C X, Gong Q H, and Liu Y Q 2018 Phys. Rev. A 97 063416 |
[37] | Gao F, Chen Y J, Xin G G, Liu J, and Fu L B 2017 Phys. Rev. A 96 063414 |
[38] | Haan S L, Breen L, Karim A, and Eberly J H 2007 Opt. Express 15 767 |
[39] | Haan S L, Smith Z S, Shomsky K N, Plantinga P W, and Atallah T L 2010 Phys. Rev. A 81 023409 |
[40] | Li Y B, Qin L L, Chen H M, Li Y H, He J J, Shi L K, Zhai C Y, Tang Q B, Liu A H, and Yu B H 2022 Acta Phys. Sin. 71 043201 (in Chinese) |
[41] | Li Y B, Wang X, Yu B H, Tang Q B, Wang G H, and Wan J G 2016 Sci. Rep. 6 37413 |
[42] | Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, and Wan J G 2016 Opt. Express 24 6469 |
[43] | Huang C, Zhong M M, and Wu Z M 2019 Acta Phys. Sin. 68 033201 (in Chinese) |
[44] | Wang X and Eberly J H 2009 Phys. Rev. Lett. 103 103007 |
[45] | Lai Y H, Wang X, Li Y B, Gong X W, Talbert B K, Blaga C I, Agostini P, and DiMauro L F 2020 Phys. Rev. A 101 013405 |
[46] | Li Y B, Xu J K, Yu B H, and Wang X 2020 Opt. Express 28 7341 |
[47] | Liu A and Thumm U 2014 Phys. Rev. A 89 063423 |
[48] | Zielinski A, Majety V, Scrinzi A 2016 Phys. Rev. A 93 023406 |
[49] | Kang H, Chen S, Chen J, Paulus G 2021 New J. Phys. 23 033041 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|