Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 090301    DOI: 10.1088/0256-307X/39/9/090301
GENERAL |
Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms
Ji-Ze Xu1, Li-Na Sun1, J.-F. Wei1, Y.-L. Du1, Ronghui Luo1, Lei-Lei Yan1*, M. Feng1,2,3,4, and Shi-Lei Su1*
1School of Physics, Zhengzhou University, Zhengzhou 450001, China
2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
3Department of Physics, Zhejiang Normal University, Jinhua 321004, China
4Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
Cite this article:   
Ji-Ze Xu, Li-Na Sun, J.-F. Wei et al  2022 Chin. Phys. Lett. 39 090301
Download: PDF(3350KB)   PDF(mobile)(3350KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We achieve the robust nonadiabatic holonomic two-qubit controlled gate in one step based on the ground-state blockade mechanism between two Rydberg atoms. By using the Rydberg-blockade effect and the Raman transition mechanism, we can produce the blockade effect of double occupation of the corresponding ground state, i.e., ground-state blockade, to encode the computational subspace into the ground state, thus effectively avoiding the spontaneous emission of the excited Rydberg state. On the other hand, the feature of geometric quantum computation independent of the evolutionary details makes the scheme robust to control errors. In this way, the controlled quantum gate constructed by our scheme not only greatly reduces the gate infidelity caused by spontaneous emission but is also robust to control errors.
Received: 06 June 2022      Editors' Suggestion Published: 22 August 2022
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/090301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ji-Ze Xu
Li-Na Sun
J.-F. Wei
Y.-L. Du
Ronghui Luo
Lei-Lei Yan
M. Feng
and Shi-Lei Su
[1] O'Leary D P, Brennen G K, and Bullock S S 2006 Phys. Rev. A 74 032334
[2] van Loock P, Munro W J, Nemoto K, Spiller T P, Ladd T D, Braunstein S L, and Milburn G J 2008 Phys. Rev. A 78 022303
[3] Albash T and Lidar D A 2018 Rev. Mod. Phys. 90 015002
[4] Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R, and Lukin M D 2000 Phys. Rev. Lett. 85 2208
[5] Saffman M, Walker T G, and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[6] Basak S, Chougale Y, and Nath R 2018 Phys. Rev. Lett. 120 123204
[7] Mallavarapu S K, Niranjan A, Li W, Wüster S, and Nath R 2021 Phys. Rev. A 103 023335
[8] Møller D, Madsen L B, and Mølmer K 2008 Phys. Rev. Lett. 100 170504
[9] Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, and Zoller P 2001 Phys. Rev. Lett. 87 037901
[10] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D, Walker T G, and Saffman M 2009 Nat. Phys. 5 110
[11] Gaetan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, parat D C, Pillet P, Browaeys A, and Grangier P 2009 Nat. Phys. 5 115
[12] Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H, and Lukin M D 2019 Phys. Rev. Lett. 123 170503
[13] Levine H, Keesling A, Omran A, Bernien H, Schwartz S, Zibrov A S, Endres M, Greiner M, Vuletić V, and Lukin M D 2018 Phys. Rev. Lett. 121 123603
[14] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, and Saffman M 2010 Phys. Rev. Lett. 104 010503
[15] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, and Browaeys A 2010 Phys. Rev. Lett. 104 010502
[16] Madjarov I S, Covey J P, Shaw A L, Choi J, Kale A, Cooper A, Pichler H, Schkolnik V, Williams J R, and Endres M 2020 Nat. Phys. 16 857
[17] Zeng Y, Xu P, He X D, Liu Y Y, Liu M, Wang J, Papoular D J, Shlyapnikov G V and Zhan M S 2017 Phys. Rev. Lett. 119 160502
[18] Ding D S, Busche H, Shi B S, Guo G C, and Adams C S 2020 Phys. Rev. X 10 021023
[19] Hannes B, Sylvai S, Alexander K, Harry L, Ahmed O, Hannes P, Soonwon C, Alexander S Z, Manuel E, Markus G, Vuletić V, and Mikhail D L 2017 Nature 551 579
[20] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[21] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
[22] Berry M V 1984 Proc. R. Soc. London A 392 45
[23] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[24] Pachos J, Zanardi P, and Rasetti M 1999 Phys. Rev. A 61 010305
[25] Duan L M, Cirac J I, and Zoller P 2001 Science 292 1695
[26] Wu L A, Zanardi P, and Lidar D A 2005 Phys. Rev. Lett. 95 130501
[27] Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y, and Duan L M 2019 Phys. Rev. Lett. 122 010503
[28] Jones J A, Vedral V, Ekert A, and Castagnoli G 2000 Nature 403 869
[29] Wang X B and Matsumoto K 2001 Phys. Rev. Lett. 87 097901
[30] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902
[31] Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M, and Singh K 2012 New J. Phys. 14 103035
[32] Xu G F, Zhang J, Tong D M, Sjöqvist E, and Kwek L C 2012 Phys. Rev. Lett. 109 170501
[33] Xu Y, Hua Z, Chen T, Pan X, Li X, Han J, Cai W, Ma Y, Wang H, Song Y P, Xue Z Y, and Sun L 2020 Phys. Rev. Lett. 124 230503
[34] Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F, and Duan L M 2014 Nature 514 72
[35] Arroyo-Camejo S, Lazariev A, Hell S W, and Balasubramanian G 2014 Nat. Commun. 5 4870
[36] Du J, Zou P, and Wang Z D 2006 Phys. Rev. A 74 020302
[37] Feng G, Xu G, and Long G 2013 Phys. Rev. Lett. 110 190501
[38] Xia T, Zhang X L, and Saffman M 2013 Phys. Rev. A 88 062337
[39] Beterov I I and Saffman M 2015 Phys. Rev. A 92 042710
[40] Theis L S, Motzoi F, Wilhelm F K, and Saffman M 2016 Phys. Rev. A 94 032306
[41] Zhao P Z, Cui X D, Xu G F, Sjöqvist E, and Tong D M 2017 Phys. Rev. A 96 052316
[42] Petrosyan D, Motzoi F, Saffman M, and Mølmer K 2017 Phys. Rev. A 96 042306
[43] Shao X Q, Li D X, Ji Y Q, Wu J H, and Yi X X 2017 Phys. Rev. A 96 012328
[44] Wang Y, Kumar A, Wu T Y, and Weiss D S 2016 Science 352 1562
[45] Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, and Biedermann G W 2014 Phys. Rev. A 89 033416
Related articles from Frontiers Journals
[1] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 090301
[2] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 090301
[3] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 090301
[4] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 090301
[5] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 090301
[6] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 090301
[7] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090301
[8] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 090301
[9] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 090301
[10] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 090301
[11] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 090301
[12] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 090301
[13] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 090301
[14] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 090301
[15] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 090301
Viewed
Full text


Abstract