GENERAL |
|
|
|
|
Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms |
Ji-Ze Xu1, Li-Na Sun1, J.-F. Wei1, Y.-L. Du1, Ronghui Luo1, Lei-Lei Yan1*, M. Feng1,2,3,4, and Shi-Lei Su1* |
1School of Physics, Zhengzhou University, Zhengzhou 450001, China 2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 3Department of Physics, Zhejiang Normal University, Jinhua 321004, China 4Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
|
|
Cite this article: |
Ji-Ze Xu, Li-Na Sun, J.-F. Wei et al 2022 Chin. Phys. Lett. 39 090301 |
|
|
Abstract We achieve the robust nonadiabatic holonomic two-qubit controlled gate in one step based on the ground-state blockade mechanism between two Rydberg atoms. By using the Rydberg-blockade effect and the Raman transition mechanism, we can produce the blockade effect of double occupation of the corresponding ground state, i.e., ground-state blockade, to encode the computational subspace into the ground state, thus effectively avoiding the spontaneous emission of the excited Rydberg state. On the other hand, the feature of geometric quantum computation independent of the evolutionary details makes the scheme robust to control errors. In this way, the controlled quantum gate constructed by our scheme not only greatly reduces the gate infidelity caused by spontaneous emission but is also robust to control errors.
|
|
Received: 06 June 2022
Editors' Suggestion
Published: 22 August 2022
|
|
|
|
|
|
[1] | O'Leary D P, Brennen G K, and Bullock S S 2006 Phys. Rev. A 74 032334 |
[2] | van Loock P, Munro W J, Nemoto K, Spiller T P, Ladd T D, Braunstein S L, and Milburn G J 2008 Phys. Rev. A 78 022303 |
[3] | Albash T and Lidar D A 2018 Rev. Mod. Phys. 90 015002 |
[4] | Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R, and Lukin M D 2000 Phys. Rev. Lett. 85 2208 |
[5] | Saffman M, Walker T G, and Mølmer K 2010 Rev. Mod. Phys. 82 2313 |
[6] | Basak S, Chougale Y, and Nath R 2018 Phys. Rev. Lett. 120 123204 |
[7] | Mallavarapu S K, Niranjan A, Li W, Wüster S, and Nath R 2021 Phys. Rev. A 103 023335 |
[8] | Møller D, Madsen L B, and Mølmer K 2008 Phys. Rev. Lett. 100 170504 |
[9] | Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, and Zoller P 2001 Phys. Rev. Lett. 87 037901 |
[10] | Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D, Walker T G, and Saffman M 2009 Nat. Phys. 5 110 |
[11] | Gaetan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, parat D C, Pillet P, Browaeys A, and Grangier P 2009 Nat. Phys. 5 115 |
[12] | Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H, and Lukin M D 2019 Phys. Rev. Lett. 123 170503 |
[13] | Levine H, Keesling A, Omran A, Bernien H, Schwartz S, Zibrov A S, Endres M, Greiner M, Vuletić V, and Lukin M D 2018 Phys. Rev. Lett. 121 123603 |
[14] | Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, and Saffman M 2010 Phys. Rev. Lett. 104 010503 |
[15] | Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, and Browaeys A 2010 Phys. Rev. Lett. 104 010502 |
[16] | Madjarov I S, Covey J P, Shaw A L, Choi J, Kale A, Cooper A, Pichler H, Schkolnik V, Williams J R, and Endres M 2020 Nat. Phys. 16 857 |
[17] | Zeng Y, Xu P, He X D, Liu Y Y, Liu M, Wang J, Papoular D J, Shlyapnikov G V and Zhan M S 2017 Phys. Rev. Lett. 119 160502 |
[18] | Ding D S, Busche H, Shi B S, Guo G C, and Adams C S 2020 Phys. Rev. X 10 021023 |
[19] | Hannes B, Sylvai S, Alexander K, Harry L, Ahmed O, Hannes P, Soonwon C, Alexander S Z, Manuel E, Markus G, Vuletić V, and Mikhail D L 2017 Nature 551 579 |
[20] | Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94 |
[21] | Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 |
[22] | Berry M V 1984 Proc. R. Soc. London A 392 45 |
[23] | Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 |
[24] | Pachos J, Zanardi P, and Rasetti M 1999 Phys. Rev. A 61 010305 |
[25] | Duan L M, Cirac J I, and Zoller P 2001 Science 292 1695 |
[26] | Wu L A, Zanardi P, and Lidar D A 2005 Phys. Rev. Lett. 95 130501 |
[27] | Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y, and Duan L M 2019 Phys. Rev. Lett. 122 010503 |
[28] | Jones J A, Vedral V, Ekert A, and Castagnoli G 2000 Nature 403 869 |
[29] | Wang X B and Matsumoto K 2001 Phys. Rev. Lett. 87 097901 |
[30] | Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902 |
[31] | Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M, and Singh K 2012 New J. Phys. 14 103035 |
[32] | Xu G F, Zhang J, Tong D M, Sjöqvist E, and Kwek L C 2012 Phys. Rev. Lett. 109 170501 |
[33] | Xu Y, Hua Z, Chen T, Pan X, Li X, Han J, Cai W, Ma Y, Wang H, Song Y P, Xue Z Y, and Sun L 2020 Phys. Rev. Lett. 124 230503 |
[34] | Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F, and Duan L M 2014 Nature 514 72 |
[35] | Arroyo-Camejo S, Lazariev A, Hell S W, and Balasubramanian G 2014 Nat. Commun. 5 4870 |
[36] | Du J, Zou P, and Wang Z D 2006 Phys. Rev. A 74 020302 |
[37] | Feng G, Xu G, and Long G 2013 Phys. Rev. Lett. 110 190501 |
[38] | Xia T, Zhang X L, and Saffman M 2013 Phys. Rev. A 88 062337 |
[39] | Beterov I I and Saffman M 2015 Phys. Rev. A 92 042710 |
[40] | Theis L S, Motzoi F, Wilhelm F K, and Saffman M 2016 Phys. Rev. A 94 032306 |
[41] | Zhao P Z, Cui X D, Xu G F, Sjöqvist E, and Tong D M 2017 Phys. Rev. A 96 052316 |
[42] | Petrosyan D, Motzoi F, Saffman M, and Mølmer K 2017 Phys. Rev. A 96 042306 |
[43] | Shao X Q, Li D X, Ji Y Q, Wu J H, and Yi X X 2017 Phys. Rev. A 96 012328 |
[44] | Wang Y, Kumar A, Wu T Y, and Weiss D S 2016 Science 352 1562 |
[45] | Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, and Biedermann G W 2014 Phys. Rev. A 89 033416 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|