ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Three-Body Recombination of Cold $^{3}$He–$^{3}$He–T$^-$ System |
Ming-Ming Zhao1, Li-Hang Li2, Bo-Wen Si1, Bin-Bin Wang3*, Bina Fu4, and Yong-Chang Han1,5* |
1Department of Physics, Dalian University of Technology, Dalian 116024, China 2Beijing Institute of Radio Measurement, Beijing 100854, China 3Physics and Space Science College, China West Normal University, Nanchong 637009, China 4State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 5DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
|
|
Cite this article: |
Ming-Ming Zhao, Li-Hang Li, Bo-Wen Si et al 2022 Chin. Phys. Lett. 39 083401 |
|
|
Abstract The atom-atom-anion three-body recombination (TBR) and collision induced dissociation (CID) processes of the $^{3}$He–$^{3}$He–T$^-$ system at ultracold temperatures are investigated by solving the Schrödinger equation in the adiabatic hyperspherical representation. The variations of the TBR and CID rates with the collision energies in the ultracold temperatures are obtained. It is found that the $J^{\varPi}=1^-$ symmetry dominates the TBR and CID processes in most of the considered collision energy range. The rate of TBR (CID) into (from) the $l=1$ anion is larger than those for the $l=0$ and $l=2$ anions, with the $l$ representing the rotational quantum number of $^{3}$HeT$^-$. This can be understood via the nonadiabatic couplings among the different channels.
|
|
Received: 05 May 2022
Published: 16 July 2022
|
|
PACS: |
34.50.-s
|
(Scattering of atoms and molecules)
|
|
34.20.Gj
|
(Intermolecular and atom-molecule potentials and forces)
|
|
|
|
|
[1] | Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 |
[2] | Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586 |
[3] | Luo X Y, Zuo Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620 |
[4] | Regal C A, Ticknor C, Bohn J L and Jin D S 2003 Phys. Rev. Lett. 90 053201 |
[5] | Suno H and Esry B D 2009 Phys. Rev. A 80 062702 |
[6] | D'Incao J P and Esry B D 2005 Phys. Rev. Lett. 94 213201 |
[7] | Suno H, Esry B D, Greene C H and Burke J P 2002 Phys. Rev. A 65 042725 |
[8] | Suno H 2017 Phys. Rev. A 96 012508 |
[9] | Zipkes C, Palzer S, Sias C and Köhl M 2010 Nature 464 388 |
[10] | Schmid S, Härter A and Denschlag J H 2010 Phys. Rev. Lett. 105 133202 |
[11] | Hall F H J, Aymar M, Boulouta-Maata N, Dulieu O and Willitsch S 2011 Phys. Rev. Lett. 107 243202 |
[12] | Grier A T, Certina M, Orucevic F and Vuletic V 2009 Phys. Rev. Lett. 102 223201 |
[13] | Ravi K, Lee S, Sharma A, Werth G and Rangwala S A 2012 Nat. Commun. 3 1126 |
[14] | Hall F H J and Willitsch S 2012 Phys. Rev. Lett. 109 233202 |
[15] | Härter A, Krükow A, Brunner A, Schnitzler W, Schnid S and Denschlag J H 2012 Phys. Rev. Lett. 109 123201 |
[16] | Neves P N B, Conde C A N and Távora L M N 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 580 66 |
[17] | Neves P N B, Conde C A N and Távora L M N 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 619 75 |
[18] | Jones J D C, Lister D G, Wareing D P and Twiddy J 1980 J. Phys. B 13 3247 |
[19] | Papanyan V O, Nersisyan G T, Ter-Avetisyan S A and Tittle F K 1995 J. Phys. B 28 807 |
[20] | Krükow A, Mohammadi A, Härter A, Denschlag J H, Pérez-Ríos J and Greene C H 2016 Phys. Rev. Lett. 116 193201 |
[21] | Pérez-Ríos J and Greene C H 2015 J. Chem. Phys. 143 041105 |
[22] | Wang B B 2021 Phys. Chem. Chem. Phys. 23 14617 |
[23] | Pérez-Ríos J, Ragole S, Wang J and Greene C H 2014 J. Chem. Phys. 140 044307 |
[24] | Wang B B, Jing S H and Zeng T X 2019 J. Chem. Phys. 150 094301 |
[25] | Niles F E and Robertson W W 1965 J. Chem. Phys. 43 1076 |
[26] | Mahan B H 1965 J. Chem. Phys. 43 3080 |
[27] | Krükow A, Mohammadi A, Härter A and Denschlag J H 2016 Phys. Rev. A 94 030701 |
[28] | Härter A and Denschlag J H 2014 Contemp. Phys. 55 33 |
[29] | Zhao M M, Wang B B and Han Y C 2022 Phys. Rev. Res. 4 013030 |
[30] | Wang B B, Han Y C, Gao W and Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926 |
[31] | Pack R T, Walker R B and Kendrick B K 1998 J. Chem. Phys. 109 6701 |
[32] | Takayanagi T and Wada A 2002 Chem. Phys. 277 313 |
[33] | Suno H and Esry B D 2008 Phys. Rev. A 78 062701 |
[34] | Johnson B R 1980 J. Chem. Phys. 73 5051 |
[35] | Otto R, Ma J Y, Ray A W, Daluz J S, Li J, Guo H and Continetti R E 2014 Science 343 396 |
[36] | Aymar M, Greene C H and Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015 |
[37] | Burke Jr. J P 1999 PhD Dissertation (Boulder: University of Colorado) |
[38] | Zhang J Y, Xu T, Ge Z W, Zhao J, Gao S B and Meng Q T 2020 Chin. Phys. B 29 063101 |
[39] | Huang J Y, Chen J, Liu S and Zhang D H 2020 J. Phys. Chem. Lett. 11 8560 |
[40] | Kendrick B K, Pack R T, Walker R B and Hayes E F 1999 J. Chem. Phys. 110 6673 |
[41] | Johnson B R 1983 J. Chem. Phys. 79 1916 |
[42] | Lepetit B, Peng Z and Kuppermann A 1990 Chem. Phys. Lett. 166 572 |
[43] | Jeziorska M, Cencek W, Patkowski K, Jeziorski B and Szalewicz K 2007 J. Chem. Phys. 127 124303 |
[44] | Casalegno M, Mella M, Morosi G and Bressanini D 2000 J. Chem. Phys. 112 69 |
[45] | Suno H and Esry B D 2010 Phys. Rev. A 82 062521 |
[46] | Nielsen E, Fedorov D V, Jensen A S and Garrido E 2001 Phys. Rep. 347 373 |
[47] | Wang K D, Zhang H X, Huang X T, Liu Y F and Sun J F 2018 Phys. Rev. A 97 012703 |
[48] | Wang Y, D'Incao J P and Esry B D 2011 Phys. Rev. A 83 032703 |
[49] | Esry K D, Greene C H and Suno H 2001 Phys. Rev. A 65 010705 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|