GENERAL |
|
|
|
|
Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology |
Yanxin Han1, Zhongqi Sun1, Tianqi Dou2, Jipeng Wang1, Zhenhua Li1, Yuqing Huang1, Pengyun Li3, and Haiqiang Ma1* |
1School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China 2China Telecom Research Institute, Beijing 102209, China 3China Academy of Electronics and Information Technology, China Electronic Technology Group Corporation, Beijing 100041, China
|
|
Cite this article: |
Yanxin Han, Zhongqi Sun, Tianqi Dou et al 2022 Chin. Phys. Lett. 39 070301 |
|
|
Abstract Quantum key distribution (QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes feasible and economical to combine QKD with classical optical communication through the same fiber using dense wavelength division multiplexing (DWDM) technology. This study proposes a detailed scheme of TF-QKD protocol with DWDM technology and analyzes its performance, considering the influence of quantum channel number and adjacent quantum crosstalk on the secret key rates. The simulation results show that the scheme further increases the secret key rate of TF-QKD and its variants. Therefore, this scheme provides a method for improving the secret key rate for practical quantum networks.
|
|
Received: 14 April 2022
Published: 17 June 2022
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
|
|
|
[1] | Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7 |
[2] | Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, 9–12 December 1999, Banglore, India, p 175 |
[3] | Bennett C H, DiVincenzo D P, Smolin J A, and Wootters W K 1996 Phys. Rev. A 54 3824 |
[4] | Diamanti E, Lo H K, Qi B, and Yuan Z 2016 npj Quantum Inf. 2 16025 |
[5] | Lütkenhaus N and Shields A J 2009 New J. Phys. 11 045005 |
[6] | Dou T Q, Wang J P, Li Z H, Qu W X, Yang S Y, Sun Z Q, Zhou F, Han Y X, Huang Y Q, and Ma H Q 2020 Chin. Phys. Lett. 37 110301 |
[7] | Huang L Y, Zhang Y C, and Yu S 2021 Chin. Phys. Lett. 38 040301 |
[8] | Gisin N, Ribordy G, Tittel W, and Zbinden H 2002 Rev. Mod. Phys. 74 145 |
[9] | Xu P, Bao S W, Li H W, Wang Y, and Bao H Z 2017 Chin. Phys. Lett. 34 020302 |
[10] | Tang G Z, Sun S H, and Li C Y 2019 Chin. Phys. Lett. 36 070301 |
[11] | Wang X B 2005 Phys. Rev. A 72 012322 |
[12] | Lo H K, Ma X, and Chen K 2005 Phys. Rev. Lett. 94 230504 |
[13] | Brassard G, Lütkenhaus N, Mor T, and Sanders B C 2000 Phys. Rev. Lett. 85 1330 |
[14] | Lo H K, Curty M, and Qi B 2012 Phys. Rev. Lett. 108 130503 |
[15] | Boaron A et al. 2018 Phys. Rev. Lett. 121 190502 |
[16] | Takeoka M, Guha S, and Wilde M M 2014 Nat. Commun. 5 5235 |
[17] | Pirandola S, Laurenza R, Ottaviani C, and Banchi L 2017 Nat. Commun. 8 15043 |
[18] | Lucamarini M, Yuan Z L, Dynes J F, and Shields A J 2018 Nature 557 400 |
[19] | Ma X, Zeng P, and Zhou H 2018 Phys. Rev. X 8 031043 |
[20] | Wang X B, Yu Z W, and Hu X L 2018 Phys. Rev. A 98 062323 |
[21] | Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C, and Han Z H 2019 Phys. Rev. Appl. 11 034053 |
[22] | Ishio H, Minowa J, and Nosu K 1984 J. Lightwave Technol. 2 448 |
[23] | Townsend P D 1997 Electron. Lett. 33 188 |
[24] | Nweke N I 2005 Appl. Phys. Lett. 87 174103 |
[25] | Patel K A, Dynes J F, Lucamarini M, Choi I, Sharpe A W, Yuan Z L, Penty R V, and Shields A J 2014 Appl. Phys. Lett. 104 051123 |
[26] | Sun W et al. 2018 J. Appl. Phys. 123 043105 |
[27] | Eriksson T et al. 2019 Commun. Phys. 2 9 |
[28] | Cai C, Sun Y, and Ji Y 2020 New J. Phys. 22 083020 |
[29] | Lin R and Chen J 2021 IEEE Commun. Lett. 25 3918 |
[30] | Li J H, Shi L, Wang J H, Li T X, and Xue Y 2021 AOPC: Optical Sensing and Imaging Technology. SPIE 12065 1206530 |
[31] | Xue R et al. 2022 Phys. Rev. Appl. 17 024045 |
[32] | Shi S and Xiao N 2022 Opt. Commun. 507 127603 |
[33] | Zeng P, Zhou H Y, Wu W J, and Ma X F 2022 arXiv:2201.04300 [quant-ph] |
[34] | Patel K, Dynes J, Lucamarini M, Choi I, Sharpe A, Yuan Z, Penty R, and Shields A 2014 Appl. Phys. Lett. 104 051123 |
[35] | Patel K, Dynes J, Choi I, Sharpe A, Dixon A, Yuan Z, Penty R, and Shields A 2012 Phys. Rev. X 2 041010 |
[36] | Peters N et al. 2009 New J. Phys. 11 045012 |
[37] | Lo H K, Chau H F, and Ardehali M 2005 J. Cryptology 18 133 |
[38] | Yoshino K I et al. 2012 Opt. Lett. 37 223 |
[39] | Sun Z Q et al. 2021 Chin. Phys. B 30 110303 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|