GENERAL |
|
|
|
|
Quantum Cloning of Steering |
Dian Zhu1, Wei-Min Shang2, Fu-Lin Zhang1*, and Jing-Ling Chen2* |
1Department of Physics, School of Science, Tianjin University, Tianjin 300072, China 2Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
|
|
Cite this article: |
Dian Zhu, Wei-Min Shang, Fu-Lin Zhang et al 2022 Chin. Phys. Lett. 39 070302 |
|
|
Abstract Quantum steering in a global state allows an observer to remotely steer a subsystem into different ensembles by performing different local measurements on the other part. We show that, in general, this property cannot be perfectly cloned by any joint operation between a steered subsystem and a third system. Perfect cloning is viable if and only if the initial state is of zero discord. We also investigate the process of cloning the steered qubit of a Bell state using a universal cloning machine. Einstein–Podolsky–Rosen (EPR) steering, which is a type of quantum correlation existing in the states without a local-hidden-state model, is observed in the two copy subsystems. This contradicts the conclusion of no-cloning of quantum steering (EPR steering) [C. Y. Chiu et al., npj Quantum Inf. 2, 16020 (2016)] based on a mutual information criterion for EPR steering.
|
|
Received: 14 April 2022
Editors' Suggestion
Published: 17 June 2022
|
|
PACS: |
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.-a
|
(Quantum information)
|
|
|
|
|
[1] | Luo M X, Li H R, Lai H, and Wang X 2017 Quantum Inf. Process. 16 297 |
[2] | Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865 |
[3] | Modi K, Brodutch A, Cable H, Paterek T, and Vedral V 2012 Rev. Mod. Phys. 84 1655 |
[4] | Brunner N, Cavalcanti D, Pironio S, Scarani V, and Wehner S 2014 Rev. Mod. Phys. 86 419 |
[5] | Uola R, Costa A C, Nguyen H C, and Gühne O 2020 Rev. Mod. Phys. 92 015001 |
[6] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) |
[7] | Wootters W K and Zurek W H 1982 Nature 299 802 |
[8] | Barnum H, Caves C M, Fuchs C A, Jozsa R, and Schumacher B 1996 Phys. Rev. Lett. 76 2818 |
[9] | Pati A K and Braunstein S L 2000 Nature 404 164 |
[10] | Pati A K and Braunstein S L 2003 arXiv:quant-ph/0303124 |
[11] | Modi K, Pati A K, Sen A, and Sen U 2018 Phys. Rev. Lett. 120 230501 |
[12] | Bužek V and Hillery M 1996 Phys. Rev. A 54 1844 |
[13] | Scarani V, Iblisdir S, Gisin N, and Acin A 2005 Rev. Mod. Phys. 77 1225 |
[14] | Lamoureux L P, Navez P, Fiurášek J, and Cerf N J 2004 Phys. Rev. A 69 040301 |
[15] | Patel D, Patro S, Vanarasa C, Chakrabarty I, and Pati A K 2021 Phys. Rev. A 103 022422 |
[16] | Schrödinger E and I 1935 Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge: Cambridge University Press) vol 31 p 555 |
[17] | Wiseman H M, Jones S J, and Doherty A C 2007 Phys. Rev. Lett. 98 140402 |
[18] | Branciard C, Cavalcanti E G, Walborn S P, Scarani V, and Wiseman H M 2012 Phys. Rev. A 85 010301 |
[19] | Law Y Z, Thinh L P, Bancal J D, and Scarani V 2014 J. Phys. A 47 424028 |
[20] | Peres A 1999 Found. Phys. 29 589 |
[21] | Vértesi T and Brunner N 2014 Nat. Commun. 5 5297 |
[22] | Moroder T, Gittsovich O, Huber M, and Gühne O 2014 Phys. Rev. Lett. 113 050404 |
[23] | Gisin N 1991 Phys. Lett. A 154 201 |
[24] | Chen J L, Su H Y, Xu Z P, Wu Y C, Wu C, Ye X J, Żukowski M, and Kwek L C 2015 Sci. Rep. 5 11624 |
[25] | Cavalcanti D, Guerini L, Rabelo R, and Skrzypczyk P 2016 Phys. Rev. Lett. 117 190401 |
[26] | Hirsch F, Quintino M T, Vértesi T, Pusey M F, and Brunner N 2016 Phys. Rev. Lett. 117 190402 |
[27] | Zhu D, He G G, and Zhang F L 2022 Phys. Rev. A 105 062202 |
[28] | Chiu C Y, Lambert N, Liao T L, Nori F, and Li C M 2016 npj Quantum Inf. 2 16020 |
[29] | Li C M, Chen Y N, Lambert N, Chiu C Y, and Nori F 2015 Phys. Rev. A 92 062310 |
[30] | Jevtic S, Pusey M, Jennings D, and Rudolph T 2014 Phys. Rev. Lett. 113 020402 |
[31] | Verstraete F 2002 Ph.D. Dissertation (Katholieke Universiteit Leuven) |
[32] | Nguyen H C and Vu T 2016 Phys. Rev. A 94 012114 |
[33] | He G G, Fan X Y, and Zhang F L 2022 Mod. Phys. Lett. A 37 2250082 |
[34] | Jevtic S, Hall M J, Anderson M R, Zwierz M, and Wiseman H M 2015 J. Opt. Soc. Am. B 32 A40 |
[35] | Nguyen H C and Vu T 2016 Europhys. Lett. 115 10003 |
[36] | Zhang F L and Zhang Y Y 2019 Phys. Rev. A 99 062314 |
[37] | Chitambar E, Streltsov A, Rana S, Bera M, Adesso G, and Lewenstein M 2016 Phys. Rev. Lett. 116 070402 |
[38] | Matera J M, Egloff D, Killoran N, and Plenio M B 2016 Quantum Sci. Technol. 1 01LT01 |
[39] | Streltsov A, Rana S, Bera M N, and Lewenstein M 2017 Phys. Rev. X 7 011024 |
[40] | Cerf N J 1999 Information-Theoretic Aspects of Quantum Copying. In: Williams C P (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science (Berlin: Springer) vol 1509 pp 218–234 |
[41] | Cerf N J 2000 Phys. Rev. Lett. 84 4497 |
[42] | Shang W M, Zhang F L, and Chen J L 2021 arXiv:2103.03126 [quant-ph] |
[43] | Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y et al. 2019 Phys. Rev. Lett. 123 070505 |
[44] | Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F et al. 2020 Phys. Rev. Lett. 125 230501 |
[45] | Liu Z H, Liang X B, Sun K, Li Q, Meng Y, Yang M, Li B, Chen J L, Xu J S, Li C F et al. 2021 Phys. Rev. Lett. 126 170505 |
[46] | Zhang R Q, Hou Z, Li Z, Zhu H, Xiang G Y, Li C F, and Guo G C 2021 Phys. Rev. Appl. 16 024052 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|