Chin. Phys. Lett.  2022, Vol. 39 Issue (6): 068501    DOI: 10.1088/0256-307X/39/6/068501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding
Xinhuang Lin, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan*, and Qing Wan*
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Cite this article:   
Xinhuang Lin, Haotian Long, Shuo Ke et al  2022 Chin. Phys. Lett. 39 068501
Download: PDF(855KB)   PDF(mobile)(937KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The human brain that relies on neural networks communicated by spikes is featured with ultralow energy consumption, which is more robust and adaptive than any digital system. Inspired by the spiking framework of the brain, spike-based neuromorphic systems have recently inspired intensive attention. Therefore, neuromorphic devices with spike-based synaptic functions are considered as the first step toward this aim. Photoelectric neuromorphic devices are promising candidates for spike-based synaptic devices with low latency, broad bandwidth, and superior parallelism. Here, the indium-gallium-zinc-oxide-based photoelectric neuromorphic transistors are fabricated for Morse coding based on spike processing, 405-nm light spikes are used as synaptic inputs, and some essential synaptic plasticity, including excitatory postsynaptic current, short-term plasticity, and high-pass filtering, can be mimicked. More interestingly, Morse codes encoded by light spikes are decoded using our devices and translated into amplitudes. Furthermore, such devices are compatible with standard integrated processes suitable for large-scale integrated neuromorphic systems.
Received: 28 March 2022      Editors' Suggestion Published: 29 May 2022
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  78.56.-a (Photoconduction and photovoltaic effects)  
  77.55.-g (Dielectric thin films)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/6/068501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I6/068501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinhuang Lin
Haotian Long
Shuo Ke
Yuyuan Wang
Ying Zhu
Chunsheng Chen
Changjin Wan
and Qing Wan
[1] van de Burgt Y, Melianas A, Keene S T, Malliaras G et al. 2018 Nat. Electron. 1 386
[2] Li Y, Yin K, Diao Y, Fang M et al. 2022 Nanoscale 14 2316
[3] Park Y and Lee J S 2017 ACS Nano 11 8962
[4] Liao F, Zhou Z, Kim B J, Chen J et al. 2022 Nat. Electron. 5 84
[5] Deco G, Rolls E T, and Romo R 2009 Prog. Neurobiol. 88 1
[6] He Y, Nie S, Liu R, Jiang S et al. 2018 J. Mater. Chem. C 6 5336
[7] John R A, Liu F, Chien N A, Kulkarni M R et al. 2018 Adv. Mater. 30 1800220
[8] Kim M K, Park Y, Kim I J, and Lee J S 2020 iScience 23 101846
[9] Marković D, Mizrahi A, Querlioz D, and Grollier J 2020 Nat. Rev. Phys. 2 499
[10] Sheridan P M, Cai F, Du C, Ma W et al. 2017 Nat. Nanotechnol. 12 784
[11] Roy K, Jaiswal A, and Panda P 2019 Nature 575 607
[12] Yang J Q, Wang R, Ren Y, Mao J Y et al. 2020 Adv. Mater. 32 2003610
[13] Zhou F, Zhou Z, Chen J, Choy T H et al. 2019 Nat. Nanotechnol. 14 776
[14] Zhang J, Dai S, Zhao Y W, Zhang J H et al. 2020 Adv. Intell. Syst. 2 1900136
[15] Li H K, Chen T P, Liu P, Hu S G et al. 2016 J. Appl. Phys. 119 244505
[16] Dai S, Wu X, Liu D, Chu Y et al. 2018 ACS Appl. Mater. & Interfaces 10 21472
[17] Seo S, Jo S H, Kim S, Shim J et al. 2018 Nat. Commun. 9 5106
[18] Zhu L, He Y, Chen C, Zhu Y et al. 2021 IEEE Trans. Electron Devices 68 1659
[19] Song S, Kim J, Kwon S M, Jo J W et al. 2021 Adv. Intell. Syst. 3 2000119
[20] Shastri B J, Tait A N, de Ferreira L T, Pernice W H P et al. 2021 Nat. Photon. 15 102
[21] Tan H, Tao Q, Pande I, Majumdar S et al. 2020 Nat. Commun. 11 1369
[22] Qin G P, Zhang H, Ruan H B, Wang J et al. 2019 Chin. Phys. Lett. 36 047301
[23] Lee E, Kim T H, Lee S W, Kim J H et al. 2019 Nano Convergence 6 24
[24] Lee C Y, Joo Y H, Kim M P, Um D S et al. 2021 Coatings 11 906
[25] Ma P F, Du L L, Wang Y M, Jiang R et al. 2018 Appl. Phys. Lett. 112 023501
[26] He Y, Nie S, Liu R, Jiang S et al. 2019 IEEE Electron Device Lett. 40 818
[27] Yoo H, Lee I S, Jung S, Rho S M et al. 2021 Adv. Mater. 33 2006091
[28] Abraira V E and Ginty D D 2013 Neuron 79 618
[29] Kim M K and Lee J S 2020 Adv. Mater. 32 1907826
[30] Gao S, Liu G, Yang H, Hu C et al. 2019 ACS Nano 13 2634
[31] Zhao Y, Liu B, Yang J, He J et al. 2020 Chin. Phys. Lett. 37 088501
[32] Nie S, He Y L, Liu R, Shi Y et al. 2019 IEEE Electron Device Lett. 40 459
[33] Yang C H 2000 Med. Eng. & Phys. 22 59
Related articles from Frontiers Journals
[1] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 068501
[2] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 068501
[3] Jin-Lei Lu, Chen Yue, Xuan-Zhang Li, Wen-Xin Wang, Hai-Qiang Jia, Hong Chen, Lu Wang. Numerical and Experimental Study on the Device Geometry Dependence of Performance of Heterjunction Phototransistors[J]. Chin. Phys. Lett., 2019, 36(10): 068501
[4] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 068501
[5] Guang-Yue Shen, Tian-Xiang Zheng, Bing-Cheng Du, Yang Lv, E Wu, Zhao-Hui Li, Guang Wu. Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode[J]. Chin. Phys. Lett., 2018, 35(11): 068501
[6] Qing-feng Wu, Sheng Cao, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates[J]. Chin. Phys. Lett., 2018, 35(9): 068501
[7] Xiang Zhang, Yu-Dong Li, Lin Wen, Dong Zhou, Jie Feng, Lin-Dong Ma, Tian-Hui Wang, Yu-Long Cai, Zhi-Ming Wang, Qi Guo. Radiation Effects Due to 3MeV Proton Irradiations on Back-Side Illuminated CMOS Image Sensors[J]. Chin. Phys. Lett., 2018, 35(7): 068501
[8] Yin Tang, Qing Cai, Lian-Hong Yang, Ke-Xiu Dong, Dun-Jun Chen, Hai Lu, Rong Zhang, You-Dou Zheng. High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chin. Phys. Lett., 2017, 34(1): 068501
[9] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 068501
[10] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 068501
[11] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 068501
[12] YUAN Li, WU Can, ZHANG Zhao-Hua, REN Tian-Ling. A Silicon-Based Positive-Intrinsic-Negative Photodetector Double Linear Array on a Thick Intrinsic Epitaxial Layer[J]. Chin. Phys. Lett., 2014, 31(05): 068501
[13] LI Lian-Bi, CHEN Zhi-Ming, REN Zhan-Qiang, GAO Zhan-Jun. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode[J]. Chin. Phys. Lett., 2013, 30(9): 068501
[14] LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le, JIANG Hao. Large Active Area AlGaN Solar-Blind Schottky Avalanche Photodiodes with High Multiplication Gain[J]. Chin. Phys. Lett., 2013, 30(3): 068501
[15] YUE Ai-Wen, WANG Ren-Fan, XIONG Bing, SHI Jing. Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector[J]. Chin. Phys. Lett., 2013, 30(3): 068501
Viewed
Full text


Abstract