CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding |
Xinhuang Lin, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan*, and Qing Wan* |
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China |
|
Cite this article: |
Xinhuang Lin, Haotian Long, Shuo Ke et al 2022 Chin. Phys. Lett. 39 068501 |
|
|
Abstract The human brain that relies on neural networks communicated by spikes is featured with ultralow energy consumption, which is more robust and adaptive than any digital system. Inspired by the spiking framework of the brain, spike-based neuromorphic systems have recently inspired intensive attention. Therefore, neuromorphic devices with spike-based synaptic functions are considered as the first step toward this aim. Photoelectric neuromorphic devices are promising candidates for spike-based synaptic devices with low latency, broad bandwidth, and superior parallelism. Here, the indium-gallium-zinc-oxide-based photoelectric neuromorphic transistors are fabricated for Morse coding based on spike processing, 405-nm light spikes are used as synaptic inputs, and some essential synaptic plasticity, including excitatory postsynaptic current, short-term plasticity, and high-pass filtering, can be mimicked. More interestingly, Morse codes encoded by light spikes are decoded using our devices and translated into amplitudes. Furthermore, such devices are compatible with standard integrated processes suitable for large-scale integrated neuromorphic systems.
|
|
Received: 28 March 2022
Editors' Suggestion
Published: 29 May 2022
|
|
PACS: |
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
77.55.-g
|
(Dielectric thin films)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
|
|
|
[1] | van de Burgt Y, Melianas A, Keene S T, Malliaras G et al. 2018 Nat. Electron. 1 386 |
[2] | Li Y, Yin K, Diao Y, Fang M et al. 2022 Nanoscale 14 2316 |
[3] | Park Y and Lee J S 2017 ACS Nano 11 8962 |
[4] | Liao F, Zhou Z, Kim B J, Chen J et al. 2022 Nat. Electron. 5 84 |
[5] | Deco G, Rolls E T, and Romo R 2009 Prog. Neurobiol. 88 1 |
[6] | He Y, Nie S, Liu R, Jiang S et al. 2018 J. Mater. Chem. C 6 5336 |
[7] | John R A, Liu F, Chien N A, Kulkarni M R et al. 2018 Adv. Mater. 30 1800220 |
[8] | Kim M K, Park Y, Kim I J, and Lee J S 2020 iScience 23 101846 |
[9] | Marković D, Mizrahi A, Querlioz D, and Grollier J 2020 Nat. Rev. Phys. 2 499 |
[10] | Sheridan P M, Cai F, Du C, Ma W et al. 2017 Nat. Nanotechnol. 12 784 |
[11] | Roy K, Jaiswal A, and Panda P 2019 Nature 575 607 |
[12] | Yang J Q, Wang R, Ren Y, Mao J Y et al. 2020 Adv. Mater. 32 2003610 |
[13] | Zhou F, Zhou Z, Chen J, Choy T H et al. 2019 Nat. Nanotechnol. 14 776 |
[14] | Zhang J, Dai S, Zhao Y W, Zhang J H et al. 2020 Adv. Intell. Syst. 2 1900136 |
[15] | Li H K, Chen T P, Liu P, Hu S G et al. 2016 J. Appl. Phys. 119 244505 |
[16] | Dai S, Wu X, Liu D, Chu Y et al. 2018 ACS Appl. Mater. & Interfaces 10 21472 |
[17] | Seo S, Jo S H, Kim S, Shim J et al. 2018 Nat. Commun. 9 5106 |
[18] | Zhu L, He Y, Chen C, Zhu Y et al. 2021 IEEE Trans. Electron Devices 68 1659 |
[19] | Song S, Kim J, Kwon S M, Jo J W et al. 2021 Adv. Intell. Syst. 3 2000119 |
[20] | Shastri B J, Tait A N, de Ferreira L T, Pernice W H P et al. 2021 Nat. Photon. 15 102 |
[21] | Tan H, Tao Q, Pande I, Majumdar S et al. 2020 Nat. Commun. 11 1369 |
[22] | Qin G P, Zhang H, Ruan H B, Wang J et al. 2019 Chin. Phys. Lett. 36 047301 |
[23] | Lee E, Kim T H, Lee S W, Kim J H et al. 2019 Nano Convergence 6 24 |
[24] | Lee C Y, Joo Y H, Kim M P, Um D S et al. 2021 Coatings 11 906 |
[25] | Ma P F, Du L L, Wang Y M, Jiang R et al. 2018 Appl. Phys. Lett. 112 023501 |
[26] | He Y, Nie S, Liu R, Jiang S et al. 2019 IEEE Electron Device Lett. 40 818 |
[27] | Yoo H, Lee I S, Jung S, Rho S M et al. 2021 Adv. Mater. 33 2006091 |
[28] | Abraira V E and Ginty D D 2013 Neuron 79 618 |
[29] | Kim M K and Lee J S 2020 Adv. Mater. 32 1907826 |
[30] | Gao S, Liu G, Yang H, Hu C et al. 2019 ACS Nano 13 2634 |
[31] | Zhao Y, Liu B, Yang J, He J et al. 2020 Chin. Phys. Lett. 37 088501 |
[32] | Nie S, He Y L, Liu R, Shi Y et al. 2019 IEEE Electron Device Lett. 40 459 |
[33] | Yang C H 2000 Med. Eng. & Phys. 22 59 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|