Chin. Phys. Lett.  2022, Vol. 39 Issue (6): 067403    DOI: 10.1088/0256-307X/39/6/067403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Phase Diagram of the BCS–Hubbard Model in a Magnetic Field
Dong-Hong Xu1,2†, Yi-Cong Yu1,3†, Xing-Jie Han4, Xi Chen1, Kang Wang1,2, Ming-Pu Qin5, Hai-Jun Liao1,6*, and Tao Xiang1,2,7*
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Wuhan Institute of Physics and Mathematics, IAPMST, Chinese Academy of Sciences, Wuhan 430071, China
4School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
5Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
6Songshan Lake Materials Laboratory, Dongguan 523808, China
7Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
Dong-Hong Xu, Yi-Cong Yu, Xing-Jie Han et al  2022 Chin. Phys. Lett. 39 067403
Download: PDF(579KB)   PDF(mobile)(695KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an extended BCS–Hubbard model and investigate its ground state phase diagram in an external magnetic field. By mapping the model onto a model of spinless fermions coupled with conserving $Z_2$ variables which are mimicked by pseudospins, the model is shown to be exactly solvable along the symmetric lines for an arbitrary on-site Hubbard interaction on the bipartite lattice. In the zero field limit, the ground states exhibit an antiferromagnetic order of pseudospins. In the large field limit, on the other hand, the pseudospins are fully polarized ordered. With the increase of the applied field, a first-order phase transition occurs between these kinds of phases when the on-site Coulomb interaction is less than a critical value $U_{\rm c}$. Above this critical $U_{\rm c}$, a novel intermediate phase emerges between the fully polarized and antiferromagnetic phases. The ground states in this phase are macroscopically degenerate, like in a spin ice, and the corresponding entropy scales linearly with the lattice size at zero temperature.
Received: 22 April 2022      Editors' Suggestion Published: 29 May 2022
PACS:  74.70.Tx (Heavy-fermion superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/6/067403       OR      https://cpl.iphy.ac.cn/Y2022/V39/I6/067403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Hong Xu
Yi-Cong Yu
Xing-Jie Han
Xi Chen
Kang Wang
Ming-Pu Qin
Hai-Jun Liao
and Tao Xiang
[1] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[2] Anderson P W 1987 Science 235 1196
[3] Halperin B I, Lee P A, and Read N 1993 Phys. Rev. B 47 7312
[4] Chen X, Ran S J, Liu T, Peng C, Huang Y Z, and Su G 2018 Sci. Bull. 63 1545
[5] Anderson P W 1973 Mater. Res. Bull. 8 153
[6] Elser V 1989 Phys. Rev. Lett. 62 2405
[7] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[8] Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404
[9] Ji J, Sun M, Cai Y, Wang Y, Sun Y, Ren W, Zhang Z, Jin F, and Zhang Q 2021 Chin. Phys. Lett. 38 047502
[10] Tomonaga S I 1950 Prog. Theor. Phys. 5 544
[11] Luttinger J 1963 J. Math. Phys. 4 1154
[12]Gogolin A O, Nersesyan A A, and Tsvelik A M 2004 Bosonization and Strongly Correlated Systems (Cambridge: Cambridge University Press)
[13] Bethe H 1931 Z. Phys. 71 205
[14]Wang Y, Yang W L, Cao J, and Shi K 2015 Off-Diagonal Bethe Ansatz for Exactly Solvable Models (Berlin: Springer)
[15] Kim C, Matsuura A, Shen Z X, Motoyama N, Eisaki H, Uchida S, Tohyama T, and Maekawa S 1996 Phys. Rev. Lett. 77 4054
[16]Giamarchi T 2003 Quantum Physics in One Dimension (Oxford: Clarendon Press) p 53
[17] Auslaender O, Steinberg H, Yacoby 1 A, Tserkovnyak 1 Y, Halperin B, Baldwin K, Pfeiffer L and West K 2005 Science 308 88
[18] Jompol Y, Ford C, Griffiths J, Farrer I, Jones G, Anderson D, Ritchie D, Silk T, and Schofield A 2009 Science 325 597
[19] Imada M, Fujimori A, and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[20] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[21] Chen Z, Li X, and Ng T K 2018 Phys. Rev. Lett. 120 046401
[22] Ezawa M 2018 Phys. Rev. B 97 241113
[23] Miao J J, Xu D H, Zhang L, and Zhang F C 2019 Phys. Rev. B 99 245154
Related articles from Frontiers Journals
[1] Yiding Liu, Qiang Fan, Jianhui Yang, Lili Wang, Weibin Zhang, and Gang Yao. Predicted High-Temperature Superconductivity in Rare Earth Hydride ErH$_{2}$ at Moderate Pressure[J]. Chin. Phys. Lett., 2022, 39(12): 067403
[2] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 067403
[3] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 067403
[4] XU Ying, WANG Jiang-Long, ZENG Zhi. Hybridization and Magnetic Ground States in Heavy Fermion Compound CeRhIn5[J]. Chin. Phys. Lett., 2005, 22(2): 067403
[5] LIU Yu, ZHANG Guang-Ming, YU Lu. Pairing Symmetry of Heavy Fermion Superconductivity in the Two-Dimensional Kondo–Heisenberg Lattice Model[J]. Chin. Phys. Lett., 2014, 31(08): 067403
Viewed
Full text


Abstract