Chin. Phys. Lett.  2022, Vol. 39 Issue (6): 067404    DOI: 10.1088/0256-307X/39/6/067404
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$
Shuo Li1,2†, Shuo Han2†, Shaohua Yan2†, Yi Cui2, Le Wang2, Shanmin Wang3, Shanshan Chen2, Hechang Lei2*, Feng Yuan4*, Jinshan Zhang1*, and Weiqiang Yu2*
1Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
3Department of Physics, Southern University of Science & Technology, Shenzhen 518055, China
4College of Physics, Qingdao University, Qingdao 266071, China
Cite this article:   
Shuo Li, Shuo Han, Shaohua Yan et al  2022 Chin. Phys. Lett. 39 067404
Download: PDF(1372KB)   PDF(mobile)(1464KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We performed high-pressure transport studies on the flat-band Kagome compounds, Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$ ($x=0$, 0.25), with a diamond anvil cell. For both compounds, the resistivity exhibits an insulating behavior with pressure up to 17 GPa. With pressure above 20 GPa, a metallic behavior is observed at high temperatures in Pd$_3$P$_2$S$_8$, and superconductivity emerges at low temperatures. The onset temperature of superconducting transition $T_{\rm C}$ rises monotonically from 2 K to 4.8 K and does not saturate with pressure up to 43 GPa. For the Se-doped compound Pd$_3$P$_2$(S$_{0.75}$Se$_{0.25}$)$_8$, the $T_{\rm C}$ is about 1.5 K higher than that of the undoped one over the whole pressure range, and reaches 6.4 K at 43 GPa. The upper critical field with field applied along the $c$ axis at typical pressures is about 50$\%$ of the Pauli limit, suggesting a 3D superconductivity. The Hall coefficient in the metallic phase is low and exhibits a peaked behavior at about 30 K, which suggests either a multi-band electronic structure or an electron correlation effect in the system.
Received: 29 March 2022      Editors' Suggestion Published: 29 May 2022
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/6/067404       OR      https://cpl.iphy.ac.cn/Y2022/V39/I6/067404
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuo Li
Shuo Han
Shaohua Yan
Yi Cui
Le Wang
Shanmin Wang
Shanshan Chen
Hechang Lei
Feng Yuan
Jinshan Zhang
and Weiqiang Yu
[1] Anderson P W 1987 Science 235 1196
[2] Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502
[3] Han T H, Helton J S, Chu S Y, Nocera D G, Rodriguez-Rivera J A, Broholm C, and Lee Y S 2012 Nature 492 406
[4] Wen J S, Yu S L, Li S Y, Yu W Q, and Li J X 2019 npj Quantum Mater. 4 12
[5] Wei Y, Ma X Y, Feng Z L, Zhang Y C, Zhang L, Yang H X, Qi Y, Meng Z Y, Wang Y C, Shi Y G, and Li S L 2021 Chin. Phys. Lett. 38 097501
[6] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G, and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401
[7] Yin J X, Zhang S T, Chang G Q, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H B, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z Q, Neupert T, Jia S, Lei H C, and Hasan M Z 2019 Nat. Phys. 15 443
[8] Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad G M, Checkelsky J G, and Comin R 2020 Nat. Mater. 19 163
[9] Kang M G, Fang S A, Ye L D, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G, and Comin R 2020 Nat. Commun. 11 4004
[10] Liu Z H, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C, and Wang S C 2020 Nat. Commun. 11 4002
[11] Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Lou R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P, and Wang S C 2021 Nat. Commun. 12 3129
[12] Han M Y, Inoue H, Fang S A, John C, Ye L D, Chan M K, Graf D, Suzuki T, Ghimire M P, Cho W J, Kaxiras E, and Checkelsky J G 2021 Nat. Commun. 12 5345
[13] Ye L D, Fang S A, Kang M G, Kaufmann J, Lee Y H, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Bell D C, Janson O, Comin R, and Checkelsky J G 2021 arXiv:2106.10824 [cond-mat.mtrl-sci]
[14] Park S, Kang S, Kim H, Lee K H, Kim P, Sim S, Lee N, Karuppannan B, Kim J, Kim J, Sim K I, Coak M J, Noda Y, Park C H, Kim J H, and Park J G 2020 Sci. Rep. 10 20998
[15] Yan S H, Gong B C, Wang L, Wu J Z, Yin Q W, Cao X Y, Zhang X, Liu X F, Lu Z Y, Liu K, and Lei H C 2022 Phys. Rev. B 105 155115
[16] Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125
[17] Ye L D, Kang M G, Liu J W, Von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638
[18] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403
[19] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P, and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[20] Nie L P, Sun K L, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T, and Chen X H 2022 Nature 604 59
[21] Feng X L, Jiang K, Wang Z Q, and Hu J P 2021 Sci. Bull. 66 1384
[22] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J, and Zhao Z X 2021 Chin. Phys. Lett. 38 057403
[23] Mielke A 1992 J. Phys. A 25 4335
[24] Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405
[25] Imada M and Kohno M 2000 Phys. Rev. Lett. 84 143
[26] Miyahara S, Kusuta S, and Furukawa N 2007 Physica C 460–462 1145
[27] Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802
[28] Mielke A 1991 J. Phys. A 24 3311
[29] Tasaki H 1998 Rep. Prog. Phys. 99 489
[30] Cao Y, Fatemi V, Demir A, Fang S A, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80
[31] Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[32] Li Z, Zhuang J, Wang L, Feng H, Gao Q, Xu X, Hao W, Wang X, Zhang C, Wu K, Dou S X, Chen L, Hu Z, and Du Y 2018 Sci. Adv. 4 eaau4511
[33] Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B H, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, and Dean C R 2020 Nat. Mater. 19 861
[34] Zi H, Zhao L X, Hou X Y, Shan L, Ren Z A, Chen G F, and Ren C 2020 Chin. Phys. Lett. 37 097403
[35] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G, and Chen X L 2021 Chin. Phys. Lett. 38 057402
[36] Meier W R, Du M H, Okamoto S, Mohanta N, May A F, McGuire M A, Bridges C A, Samolyuk G D, and Sales B C 2020 Phys. Rev. B 102 075148
[37] Thouless D J 1977 Phys. Rev. Lett. 39 1167
[38] Bither T A, Donohue P C, and Young H S 1971 J. Solid State Chem. 3 300
[39] Tsigankov D N and Efros A L 2002 Phys. Rev. Lett. 88 176602
[40] Ovadyahu Z and Imry Y 1985 J. Phys. Chem. C 18 L19
[41] Rosenbaum R, Heines A, Karpovski M, Pilosof M, and Witcomb M 1997 J. Phys.: Condens. Matter 9 5413
[42] Zhou Y, He X Y, Wang S Y, Wang J, Chen X L, Zhou Y H, An C, Zhang M, Zhang Z T, and Yang Z R 2022 arXiv:2203.16943 [cond-mat.supr-con]
[43] Wang Q, Qiu X L, Pei C Y, Gong B C, Gao L L, Zhao Y, Cao W Z, Li C H, Zhu S H, Zhang M X, Chen Y L, Liu K, and Qi Y P 2022 arXiv:2204.05179 [cond-mat.supr-con]
[44] Perez-Gonzalez A 1996 Phys. Rev. B 54 16053
[45] Fulde P 1973 Adv. Phys. 22 667
[46] Nakamura D, Adachi T, Omori K, Koike Y, and Takeyama S 2019 Sci. Rep. 9 16949
[47] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, and Wang N L 2009 Nature 457 565
[48]Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadephia: Saunders College Publishing) p 240
[49] Li P C, Balakirev F F, and Greene R L 2007 Phys. Rev. Lett. 99 047003
[50] Hwang H Y, Batlogg B, Takagi H, Kao H L, Kwo J, Cava R J, Krajewski J J, and Peck W F 1994 Phys. Rev. Lett. 72 2636
Related articles from Frontiers Journals
[1] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 067404
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 067404
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 067404
[4] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 067404
[5] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 067404
[6] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 067404
[7] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 067404
[8] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 067404
[9] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 067404
[10] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 067404
[11] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 067404
[12] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 067404
[13] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 067404
[14] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 067404
[15] Yi Cui, Ze Hu, Jin-Shan Zhang, Wen-Long Ma, Ming-Wei Ma, Zhen Ma, Cong Wang, Jia-Qiang Yan, Jian-Ping Sun, Jin-Guang Cheng, Shuang Jia, Yuan Li, Jin-Sheng Wen, He-Chang Lei, Pu Yu, Wei Ji, Wei-Qiang Yu. Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe$_{0.93}$S$_{0.07}$, ZrNCl, 1$T$-TaS$_2$ and Bi$_2$Se$_3$[J]. Chin. Phys. Lett., 2019, 36(7): 067404
Viewed
Full text


Abstract