Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 057301    DOI: 10.1088/0256-307X/39/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties
Xiaoxia Li1†, Qili Li1†, Tongzhou Ji1, Ruige Yan1, Wenlin Fan1, Bingfeng Miao1,2, Liang Sun1,2, Gong Chen1,2, Weiyi Zhang1,2, and Haifeng Ding1,2*
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Cite this article:   
Xiaoxia Li, Qili Li, Tongzhou Ji et al  2022 Chin. Phys. Lett. 39 057301
Download: PDF(1362KB)   PDF(mobile)(3322KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Scanning tunneling microscopy is a powerful tool to build artificial atomic structures that do not exist in nature but possess exotic properties. In this study, we constructed Lieb lattices with different lattice constants by real atoms, i.e., Fe atoms on Ag(111), and probed their electronic properties. We obtain a surprising long-range effective electron wavefunction overlap between Fe adatoms as it exhibits a $\frac{1}{r^{2}}$ dependence with the interatomic distance $r$ instead of the theoretically predicted exponential one. Combining control experiments, tight-binding modeling, and Green's function calculations, we attribute the observed long-range overlap to being enabled by the surface state. Our findings enrich the understanding of the electron wavefunction overlap and provide a convenient platform to design and explore artificial structures and future devices with real atoms.
Received: 10 February 2022      Editors' Suggestion Published: 26 April 2022
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.20.At (Surface states, band structure, electron density of states)  
  73.20.-r (Electron states at surfaces and interfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/057301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/057301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoxia Li
Qili Li
Tongzhou Ji
Ruige Yan
Wenlin Fan
Bingfeng Miao
Liang Sun
Gong Chen
Weiyi Zhang
and Haifeng Ding
[1] Heinrich A J, Lutz C P, Gupta J A, and Eigler D M 2002 Science 298 1381
[2] Li Q L, Li X X, Miao B F, Sun L, Chen G, Han P, and Ding H F 2020 Nat. Commun. 11 1400
[3] Moon C R, Mattos L S, Foster B K, Zeltzer G, and Manoharan H C 2009 Nat. Nanotechnol. 4 167
[4] Kalff F E, Rebergen M P, Fahrenfort E, Girovsky J, Toskovic R, Lado J L, Fernández-Rossier J, and Otte A F 2016 Nat. Nanotechnol. 11 926
[5] Nilius N, Wallis T M, and Ho W 2002 Science 297 1853
[6] Hirjibehedin C F, Lutz C P, and Heinrich A J 2006 Science 312 1021
[7] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, and Yazdani A 2014 Science 346 602
[8] Feldman B E, Randeria M T, Li J, Jeon S J, Xie Y L, Wang Z J, Drozdov I K, Bernevig B A, and Yazdani A 2017 Nat. Phys. 13 286
[9] Jeon S, Xie Y L, Li J, Wang Z J, Bernevig B A, and Yazdani A 2017 Science 358 772
[10] Kim H, Palacio-Morales A, Posske T, Rozsa L, Palotás K, Szunyogh L, Thorwart M, and Wiesendanger R 2018 Sci. Adv. 4 eaar5251
[11] Crommie M F, Lutz C P, and Eigler D M 1993 Science 262 218
[12] Manoharan H C, Lutz C P, and Eigler D M 2000 Nature 403 512
[13] Li Q L, Cao R X, and Ding H F 2020 Appl. Phys. Lett. 117 060501
[14] Gomes K K, Mar W, Ko W, Guinea F, and Manoharan H C 2012 Nature 483 306
[15] Collins L C, Witte T G, Silverman R, Green D B, and Gomes K K 2017 Nat. Commun. 8 15961
[16] Kempkes S N, Slot M R, Freeney S E, Zevenhuizen S J M, Vanmaekelbergh D, Swart I, and Smith C M 2019 Nat. Phys. 15 127
[17] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[18] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[19] Mielke A and Tasak H 1993 Commun. Math. Phys. 158 341
[20] Tasaki H 1994 Phys. Rev. Lett. 73 1158
[21] Miyahara S, Kusuta S, and Furukawa N 2007 Physica C 460–462 1145
[22] Kopnin N B, Heikkilä T T, and Volovik G E 2011 Phys. Rev. B 83 220503(R)
[23] Julku A, Peotta S, Vanhala T I, Kim D H, and Türmä P 2016 Phys. Rev. Lett. 117 045303
[24] Weeks C and Franz M 2010 Phys. Rev. B 82 085310
[25] Goldman N, Urban D F, and Bercioux D 2011 Phys. Rev. A 83 063601
[26] Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802
[27] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E, and Thomson R R 2015 Phys. Rev. Lett. 114 245504
[28] Taie S, Ozawa H, Ichinose T, Nishio T, Nakajima S, and Takahashi Y 2015 Sci. Adv. 1 e1500854
[29] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejiá-Cortés C, Weimann S, Szameit A, and Molina M I 2015 Phys. Rev. Lett. 114 245503
[30] Diebel F, Leykam D, Kroesen S, Denz C, and Desyatnikov A S 2016 Phys. Rev. Lett. 116 183902
[31] Slot M R, Gardenier T S, Jacobse P H, van Miert G C P, Kempkes S N, Zevenhuizen S J M, Smith C M, Vanmaekelbergh D, and Swart I 2017 Nat. Phys. 13 672
[32] Drost R, Ojanen T, Harju A, and Liljeroth P 2017 Nat. Phys. 13 668
[33] Yan L H and Liljeroth P 2019 Adv. Phys.: X 4 1651672
[34] Slot M R, Kempkes S N, Knol E J, van Weerdenburg W M J, van den Broeke J J, Wegner D, Vanmaekelbergh D, Khajetoorians A A, Smith C M, and Swart I 2019 Phys. Rev. X 9 011009
[35] Eigler D M and Schweizer E K 1990 Nature 344 524
[36]Kittel C 2005 Fermi Surfaces and Metals in Introduction to Solid State Physics (New York: Wiley) p 233
[37] Kliewer J, Berndt R, and Crampin S 2000 Phys. Rev. Lett. 85 4936
[38] Fiete G A and Heller E J 2003 Rev. Mod. Phys. 75 933
[39] Li J T, Schneider W D, and Berndt R 1997 Phys. Rev. B 56 7656
[40] Mielke A 1991 J. Phys. A 24 3311
[41] Shen R, Shao L B, Wang B, and Xing D Y 2010 Phys. Rev. B 81 041410(R)
[42] Qiu W X, Li S, Gao J H, Zhou Y, and Zhang F C 2016 Phys. Rev. B 94 241409(R)
[43] Lazarovits B, Szunyogh L, and Weinberger P 2006 Phys. Rev. B 73 045430
[44] Lounis S, Mavropoulos P, Dederichs P H, and Blügel S 2006 Phys. Rev. B 73 195421
[45] Madhavan V, Chen W, Jamneala T, Crommie M F, and Wingreen N S 2001 Phys. Rev. B 64 165412
[46] Olsson F E, Persson M, Borisov A G, Gauyacq J P, Lagoute J, and Fölsch S 2004 Phys. Rev. Lett. 93 206803
[47] Limot L, Pehlke E, Kröger J, and Berndt R 2005 Phys. Rev. Lett. 94 036805
[48] Tacca M S, Jacob T, and Goldberg E C 2021 Phys. Rev. B 103 245419
[49] Fernández J, Roura-Bas P, and Aligia A A 2021 Phys. Rev. Lett. 126 046801
[50] Fölsch S, Hyldgaard P, Koch R, and Ploog K H 2004 Phys. Rev. Lett. 92 056803
[51] Lagoute J, Liu X, and Fölsch S 2005 Phys. Rev. Lett. 95 136801
[52] Huda M N, Kezilebieke S, and Liljeroth P 2020 Phys. Rev. Res. 2 043426
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 057301
[2] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 057301
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 057301
[4] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 057301
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 057301
[6] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 057301
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 057301
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 057301
[9] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 057301
[10] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 057301
[11] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 057301
[12] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi[J]. Chin. Phys. Lett., 2020, 37(6): 057301
[13] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *[J]. Chin. Phys. Lett., 0, (): 057301
[14] An-Ning Dong, Li-Huan Sun, Xiang-Qian Tang, Yi-Kun Yao, Yang An, Dong Hao, Xin-Yan Shan, Xing-Hua Lu. Observation of Simplest Water Chains on Surface Stabilized by a Hydroxyl Group at One End[J]. Chin. Phys. Lett., 2019, 36(11): 057301
[15] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 057301
Viewed
Full text


Abstract