Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 057102    DOI: 10.1088/0256-307X/39/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anisotropic Fermi Surfaces, Electrical Transport, and Two-Dimensional Fermi Liquid Behavior in Layered Ternary Boride MoAlB
Pan Nie1, Huakun Zuo1, Lingxiao Zhao2*, and Zengwei Zhu1*
1Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Pan Nie, Huakun Zuo, Lingxiao Zhao et al  2022 Chin. Phys. Lett. 39 057102
Download: PDF(1055KB)   PDF(mobile)(1203KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a study of fermiology, electrical anisotropy, and Fermi liquid properties in the layered ternary boride MoAlB, which could be peeled into two-dimensional (2D) metal borides (MBenes). By studying the quantum oscillations in comprehensive methods of magnetization, magnetothermoelectric power, and torque with the first-principle calculations, we reveal three types of bands in this system, including two 2D-like electronic bands and one complex three-dimensional-like hole band. Meanwhile, a large out-of-plane electrical anisotropy ($\rho_{bb}/\rho_{aa}\sim 1100$ and $\rho_{bb}/\rho_{cc}\sim 500$, at 2 K) was observed, which is similar to those of the typical anisotropic semimetals but lower than those of some semiconductors (up to $10^{5}$). After calculating the Kadowaki–Woods ratio (${\rm KWR} = A/\gamma^2$), we observed that the ratio of the in-plane $A_{a,c}/\gamma^2$ is closer to the universal trend, whereas the out-of-plane $A_{b}/\gamma^2$ severely deviates from the universality. This demonstrates a 2D Fermi liquid behavior. In addition, MoAlB cannot be unified using the modified KWR formula like other layered systems (Sr$_2$RuO$_4$ and MoOCl$_2$). This unique feature necessitates further exploration of the Fermi liquid property of this layered molybdenum compound.
Received: 02 March 2022      Published: 29 April 2022
PACS:  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  71.20.Be (Transition metals and alloys)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/057102       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/057102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pan Nie
Huakun Zuo
Lingxiao Zhao
and Zengwei Zhu
[1] Kota S, Sokol M, and Barsoum M W 2020 Int. Mater. Rev. 65 226
[2] Lu J, Kota S, Barsoum M W, and Hultman L 2017 Mater. Res. Lett. 5 235
[3] Gong Y, Guo B, Wang X, Ye W, Li R, Chen X, Wang J, and Zhang G 2020 Int. J. Refract. Met. Hard Mater. 93 105345
[4] Ade M and Hillebrecht H 2015 Inorg. Chem. 54 6122
[5] Qi X X, Song G P, Yin W L, Wang M F, He X D, Zheng Y T, Wang R G, and Bai Y L 2020 J. Inorg. Mater. 35 53
[6] Bai Y, Qi X, He X, Sun D, Kong F, Zheng Y, Wang R, and Duff A I 2019 J. Am. Ceram. Soc. 102 3715
[7] Jeitschko W 1969 Acta Crystallogr. Sect. B 25 163
[8] Becher H J, Krogmann K, and Peisker E 1966 Z. Anorg. Allg. Chem. 344 140
[9] Jeitschko W 1966 Monatsh. Chem. - Chem. Mon. 97 1472
[10] Xiang H, Feng Z, Li Z, and Zhou Y 2018 J. Alloys Compd. 738 461
[11]Jung W and Petry K 1988 Z. Kristallographie 182 153
[12] Su X, Dong J, Chu L, Sun H, Grasso S, and Hu C 2020 Ceram. Int. 46 15214
[13] Kota S, Zapata-Solvas E, Ly A, Lu J, Elkassabany O, Huon A, Lee W E, Hultman L, May S J, and Barsoum M W 2016 Sci. Rep. 6 1
[14] Lu X, Li S, Zhang W, Yu W, and Zhou Y 2019 Ceram. Int. 45 9386
[15] Kota S, Agne M, Zapata-Solvas E, Dezellus O, Lopez D, Gardiola B, Radovic M, and Barsoum M W 2017 Phys. Rev. B 95 144108
[16] Alameda L T, Moradifar P, Metzger Z P, Alem N, and Schaak R E 2018 J. Am. Chem. Soc. 140 8833
[17] Alameda L T, Holder C F, Fenton J L, and Schaak R E 2017 Chem. Mater. 29 8953
[18] Akopov G, Yeung M T, and Kaner R B 2017 Adv. Mater. 29 1604506
[19] Huang Y, Si J, Lin S, Lv H, Song W, Zhang R, Luo X, Lu W, Zhu X, and Sun Y 2022 Small 18 2104460
[20] Zhao L, Xu L, Ding L, Zuo H, and Zhu Z 2020 Phys. Rev. B 102 075139
[21] Miyake K, Matsuura T, and Varma C M 1989 Solid State Commun. 71 1149
[22] Rice M J 1968 Phys. Rev. Lett. 20 1439
[23] Kadowaki K and Woods S 1986 Solid State Commun. 58 507
[24] Candolfi C, Lenoir B, Dauscher A, Bellouard C, Hejtmánek J, Šantavá E, and Tobola J 2007 Phys. Rev. Lett. 99 037006
[25] Wang Z, Huang M, Zhao J, Chen C, Huang H, Wang X, Liu P, Wang J, Xiang J, Feng C, Zhang Z, Cui X, Lu Y, Yang S A, and Xiang B 2020 Phys. Rev. Mater. 4 041001
[26] Zhang S B, Sun Y P, Zhao B C, Ang R, Zhu X B, and Song W H 2009 J. Alloys Compd. 479 22
[27] Zhang S B, Sun Y P, Zhao B C, Zhu X B, and Song W H 2006 Phys. Status Solidi B 243 1331
[28] Wang J, Nie P, Li X, Zuo H, Fauqué B, Zhu Z, and Behnia K 2020 Proc. Natl. Acad. Sci. USA 117 30215
[29] Ohmichi E and Osada T 2002 Rev. Sci. Instrum. 73 3022
[30] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101
[31] Madsen G K H, Carrete J, and Verstraete M J 2018 Comput. Phys. Commun. 231 140
[32] Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
[33] Naughton M J, Ulmet J P, Narjis A, Askenazy S, Chaparala M V, and Hope A P 1997 Rev. Sci. Instrum. 68 4061
[34] Naughton M J, Ulmet J P, Narjis A, Askenazy S, Chaparala M V, and Richter R 1998 Physica B 246–247 125
[35] Kanda Y 1991 Sens. Actuators A 28 83
[36]Lifshitz I and Kosevich A 1956 Sov. Phys.-JETP 2 636
[37] Madsena G K H and Singhb D J 2006 Comput. Phys. Commun. 175 67
[38] Maeno Y, Yoshida K, Hashimoto H, Nishizaki S, Ikeda S I, Nohara M, Fujita T, Mackenzie A P, Hussey N E, Bednorz J G, and Lichtenberg F 1997 J. Phys. Soc. Jpn. 66 1405
[39] Zhu Z, Nie P, Fauqué B, Vignolle B, Proust C, McDonald R D, Harrison N, and Behnia K 2019 Phys. Rev. X 9 011058
[40] Primak W and Fuchs L H 1954 Phys. Rev. 95 22
[41] Zhu Z, Lin X, Liu J, Fauqué B, Tao Q, Yang C, Shi Y, and Behnia K 2015 Phys. Rev. Lett. 114 176601
[42] Hicks C W, Gibbs A S, Mackenzie A P, Takatsu H, Maeno Y, and Yelland E A 2012 Phys. Rev. Lett. 109 116401
[43] Holm W, Andersson M, Rapp Ö, Kulikov M A, and Makarenko I N 1993 Phys. Rev. B 48 4227
[44] Shamoto S, Onoda M, Sato M, and Hosoya S 1987 Solid State Commun. 62 479
[45] Chen X H, Yu M, Ruan K Q, Li S Y, Gui Z, Zhang G C, and Cao L Z 1998 Phys. Rev. B 58 14219
[46] Bryja H, Hühne R, Iida K, Molatta S, Sala A, Putti M, Schultz L, Nielsch K, and Hänisch J 2017 Supercond. Sci. Technol. 30 115008
[47] Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z, and Cao G H 2019 Phys. Rev. B 99 144501
[48] Wang X F, Wu T, Wu G, Chen H, Xie Y L, Ying J J, Yan Y J, Liu R H, and Chen X H 2009 Phys. Rev. Lett. 102 117005
[49] Shirer K R, Modic K A, Zimmerling T, Bachmann M D, König M, Moll P J W, Schoop L, and Mackenzie A P 2019 APL Mater. 7 101116
[50] Tiong K K, Ho C H, and Huang Y S 1999 Solid State Commun. 111 635
[51] Pisoni A, Jacimovic J, Gaál R, Náfrádi B, Berger H, Révay Z, and Forró L 2016 Scr. Mater. 114 48
[52] Zhang C, Chen X, Almasan C, Gardner J, and Sarrao J 2002 Phys. Rev. B 65 134439
[53] Limelette P, Hardy V, Auban-Senzier P, Jérome D, Flahaut D, Hébert S, Frésard R, Simon C, Noudem J, and Maignan A 2005 Phys. Rev. B 71 233108
[54] Salvetat J P, Berger H, Halbritter A, Mihaly G, Pavuna D, and Forro L 2000 Europhys. Lett. 52 584
[55] Jacko A, Fjærestad J, and Powell B 2009 Nat. Phys. 5 422
[56] Kumar N, Sun Y, Nicklas M, Watzman S J, Young O, Leermakers I, Hornung J, Klotz J, Gooth J, Manna K et al. 2019 Nat. Commun. 10 1
[57] Bai Y, Qi X, Duff A, Li N, Kong F, He X, Wang R, and Lee W E 2017 Acta Mater. 132 69
[58] Gunst T, Markussen T, Stokbro K, and Brandbyge M 2016 Phys. Rev. B 93 035414
[59] Lin X, Fauqué B, and Behnia K 2015 Science 349 945
[60] Wang J, Wu J, Wang T, Xu Z, Wu J, Hu W, Ren Z, Liu S, Behnia K, and Lin X 2020 Nat. Commun. 11 1
[61] Koyama T, Yamashita H, Takahashi Y, Kohara T, Watanabe I, Tabata Y, and Nakamura H 2008 Phys. Rev. Lett. 101 126404
[62] Mackenzie A P, Hussey N E, Diver A J, Julian S R, Maeno Y, Nishizaki S, and Fujita T 1996 Phys. Rev. B 54 7425
Related articles from Frontiers Journals
[1] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 057102
[2] Li-Xia Qin, Rong-Li Jiang. Phase Transition and Band Structure Tuned by Strains in Al$_{1/2}$Ga$_{1/2}$N Alloy of Complex Structure[J]. Chin. Phys. Lett., 2016, 33(07): 057102
[3] ZHAO Bo-Tao, DUAN Yi-Feng, SHI Hong-Liang, QIN Li-Xia, SHI Li-Wei, TANG Gang. A Hybrid Density Functional Theory Study of Band Gap Tuning in ZnO through Pressure[J]. Chin. Phys. Lett., 2012, 29(11): 057102
[4] PARK Seoung-Hwan, LEE Yong-Tak . Optical Properties of Zinc-Blende InGaN/GaN Quantum Well Structures and Comparison with Experiment[J]. Chin. Phys. Lett., 2010, 27(4): 057102
[5] WANG Gui, GONG Xin-Gao. A Possible Structure of the Al36 Cluster: Coexistence of Icosahedral and fcc-Like Structures[J]. Chin. Phys. Lett., 2009, 26(8): 057102
[6] LI Ying-Hui, CHEN Chun-Xia, LIU Yong-Zhi, JIANG Cheng, ZOU Ze-Ya, OU Yi, LI Zu-An. Noise Characteristics of Optocouplers on Neutron Radiation[J]. Chin. Phys. Lett., 2008, 25(11): 057102
[7] DELIGOZ Engin, COLAKOGLU Kemal, CIFTCI Yasemin Oztekin. Ab Initio Study on Hypothetical Silver Nitride[J]. Chin. Phys. Lett., 2008, 25(6): 057102
[8] QIAO Yan-Bin, ZHONG Guo-Hua, LI Di, WANG Jiang-Long, QIN Xiao-Ying, ZENG Zhi. Strongly Correlated Effect in TiS2[J]. Chin. Phys. Lett., 2007, 24(4): 057102
[9] LU Tie-Yu, CHEN De-Yan, HUANG Mei-Chun. Quasiparticle Band Structure of BaS[J]. Chin. Phys. Lett., 2006, 23(4): 057102
[10] MA Chun-Lan, PAN Tao. Electronic Structures of the Filled Tetrahedral Semiconductor Li3AlN2[J]. Chin. Phys. Lett., 2006, 23(1): 057102
Viewed
Full text


Abstract