Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 044203    DOI: 10.1088/0256-307X/39/4/044203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Laser-Induced Electron Fresnel Diffraction in Tunneling and Over-Barrier Ionization
Lei Geng1, Hao Liang1, and Liang-You Peng1,2,3,4*
1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
4Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
Lei Geng, Hao Liang, and Liang-You Peng 2022 Chin. Phys. Lett. 39 044203
Download: PDF(788KB)   PDF(mobile)(908KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Photoelectron momentum distribution in strong-field ionization has a variety of structures that reveal the complicated dynamics of this process. Recently, we identified a low-energy interference structure in the case of a super-intense extreme ultraviolet (XUV) laser pulse and attributed it to the laser-induced electron Fresnel diffraction. This structure is determined by the laser-induced electron displacement [Geng et al. Phys. Rev. A 104 (2021) L021102]. In the present work, we find that the Fresnel diffraction picture also appears in the tunneling and over-barrier regime of ionization by short pulses. However, the electron displacement is now induced by the electric field component of the laser pulse rather than the magnetic field component in the case of the super-intense XUV pulse. After corresponding modifications to our quantum and semiclassical models, we find that the same physical mechanism of the Fresnel diffraction governs the low-energy interference structures along the laser polarization. The results predicted by the two models agree well with the accurate results from the numerical solution to the time-dependent Schrödinger equation.
Received: 11 January 2022      Editors' Suggestion Published: 28 March 2022
PACS:  42.82.-m (Integrated optics)  
  42.79.-e (Optical elements, devices, and systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/4/044203       OR      https://cpl.iphy.ac.cn/Y2022/V39/I4/044203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei Geng
Hao Liang
and Liang-You Peng
[1] Strickland D and Mourou G 1985 Opt. Commun. 55 447
[2] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A, and Corkum P B 1994 Phys. Rev. A 49 2117
[3] Guo X, Jin C, He Z, Zhao S F, Zhou X X, and Cheng Y 2021 Chin. Phys. Lett. 38 123301
[4] Corkum P B, Burnett N H, and Brunel F 1989 Phys. Rev. Lett. 62 1259
[5] Zhang K, Liu M, Wang B B, Guo Y C, Yan Z C, Chen J, and Liu X J 2017 Chin. Phys. Lett. 34 113201
[6] Ullrich J, Dörner R, Lencinas S, Jagutzki O, Schmidt-Böcking H, and Buck U 1997 J. Phys. B 30 2917
[7] Eppink A T J B and Parker D H 1997 Rev. Sci. Instrum. 68 3477
[8] de Morisson F C F and Maxwell A S 2020 Rep. Prog. Phys. 83 034401
[9] Huismans Y, Rouzée A, Gijsbertsen A et al. 2011 Science 331 61
[10] Jiang W C, Chen S G, Peng L Y, and Burgdörfer J 2020 Phys. Rev. Lett. 124 043203
[11] Geng L, Liang H, Krajewska K, Peng L Y, and Gong Q 2021 Phys. Rev. A 104 L021102
[12] Rescigno T N and McCurdy C W 2000 Phys. Rev. A 62 032706
[13] Park T J and Light J C 1986 J. Chem. Phys. 85 5870
[14] Morishita T and Lin C D 2013 Phys. Rev. A 87 063405
[15] Eberly J H and Kulander K C 1993 Science 262 1229
[16]Keldysh L V 1965 Sov. Phys.-JETP 20 1307
[17]Ammosov M V, Delone N B, and Krainov V P 1986 Zh. Eksp. Teor. Fiz. 91 2008
[18]Landau L D and Lifshitz L M 1981 Quantum Mechanics (Non-Relativistic Theory) 3rd edn (Oxford: Butterworth-Heinemann)
[19] Yuan M H, Bandrauk A D, and Bian X B 2021 Phys. Rev. A 103 013108
[20] Manescu C, Krause J L, and Schafer K J 2003 Phys. Rev. A 68 013405
[21] Wu H C and Meyer-Ter-Vehn J 2012 Nat. Photon. 6 304
[22] Xu J, Shen B, Zhang X, Shi Y, Ji L, Zhang L, Xu T, Wang W, Zhao X, and Xu Z 2018 Sci. Rep. 8 266
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 044203
[2] Xiaopeng Zhou, Xinning Zeng, Xuyang Ning, Abdusalam Abdukerim, Wei Chen, Xun Chen, Yunhua Chen, Chen Cheng, Xiangyi Cui, Yingjie Fan, Deqing Fang, Changbo Fu, Mengting Fu, Lisheng Geng, Karl Giboni, Linhui Gu, Xuyuan Guo, Ke Han, Changda He, Di Huang, Yan Huang, Yanlin Huang, Zhou Huang, Xiangdong Ji, Yonglin Ju, Shuaijie Li, Huaxuan Liu, Jianglai Liu, Xiaoying Lu, Wenbo Ma, Yugang Ma, Yajun Mao, Yue Meng, Kaixiang Ni, Jinhua Ning, Xiangxiang Ren, Changsong Shang, Guofang Shen, Lin Si, Andi Tan, Anqing Wang, Hongwei Wang, Meng Wang, Qiuhong Wang, Siguang Wang, Wei Wang, Xiuli Wang, Zhou Wang, Mengmeng Wu, Shiyong Wu, Weihao Wu, Jingkai Xia, Mengjiao Xiao, Pengwei Xie, Binbin Yan, Jijun Yang, Yong Yang, Chunxu Yu, Jumin Yuan, Ying Yuan, Dan Zhang, Tao Zhang, Li Zhao, Qibin Zheng, Jifang Zhou, and Ning Zhou (PandaX-II Collaboration). Erratum: A Search for Solar Axions and Anomalous Neutrino Magnetic Moment with the Complete PandaX-II Data [CHIN. PHYS. LETT. 38 (2021) 011301][J]. Chin. Phys. Lett., 2021, 38(10): 044203
[3] Jun-xia Zhou, Ren-hong Gao, Jintian Lin, Min Wang, Wei Chu, Wen-bo Li, Di-feng Yin, Li Deng, Zhi-wei Fang, Jian-hao Zhang, Rong-bo Wuand Ya Cheng. Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching[J]. Chin. Phys. Lett., 2020, 37(8): 044203
[4] Shining Zhu. Meter-Level Optical Delay Line on a Low-Loss Lithium Niobate Nanophotonics Chip[J]. Chin. Phys. Lett., 2020, 37(8): 044203
[5] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 044203
[6] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 044203
[7] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2018, 35(1): 044203
[8] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 044203
[9] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 044203
[10] A. A. Latiff, A. Dhar, S. W. Harun, I. M. Babar, S. Das, M. C. Paul, H. Ahmad. Dual-Wavelength Holmium-Doped Fiber Laser Pumped by Thulium–Ytterbium Co-Doped Fiber Laser[J]. Chin. Phys. Lett., 2016, 33(05): 044203
[11] Ismael Chiamenti, Francesca Bonfigli, Anderson S. L. Gomes, Rosa Maria Montereali, Larissa N. da Costa, Hypolito J. Kalinowski. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride[J]. Chin. Phys. Lett., 2014, 31(1): 044203
[12] LIN Xu-Sheng, LIU Jing-Lin, ZHENG Yun-Bao, LAN Sheng. Modulation of Junction Defects Created by Crossing Photonic Crystal Waveguides[J]. Chin. Phys. Lett., 2014, 31(1): 044203
[13] JIN Yi-Chang, XU Chao, QIU Hui-Ye, XIANG Le-Qiang, YANG Jian-Yi, JIANG Xiao-Qing. Nonreciprocal Magneto-Plasmonic Waveguide with Compact Metal-Sandwiched Structure[J]. Chin. Phys. Lett., 2013, 30(9): 044203
[14] SHEN Ao, QIU Chen, HU Ting, XU Chao, JIANG Xiao-Qing, LI Yu-Bo, YANG Jian-Yi. An Eight-Channel 400 GHz-Spacing Etched Diffraction Grating Multi/Demultiplexer on a Nanophotonic Silicon-on-Insulator Platform[J]. Chin. Phys. Lett., 2013, 30(8): 044203
[15] QIU Chen, HU Ting, WANG Wan-Jun, YU Ping, JIANG Xiao-Qing, YANG Jian-Yi. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection[J]. Chin. Phys. Lett., 2012, 29(9): 044203
Viewed
Full text


Abstract