Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 117101    DOI: 10.1088/0256-307X/39/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation
Neng Xie1, Danqing Hu1, Shu Chen1,2,3, and Yi-feng Yang1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Neng Xie, Danqing Hu, Shu Chen et al  2022 Chin. Phys. Lett. 39 117101
Download: PDF(5854KB)   PDF(mobile)(5858KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate interplay of topological and Kondo effects in a one-dimensional Kondo–Heisenberg model with nontrivial conduction band using the density matrix renormalization group method. By analyzing the density profile, the local hybridization, and the spin/charge gap, we find that the Kondo effect can be destructed at edges of the chain by the topological end state below a finite critical Kondo coupling $J_{\scriptscriptstyle{\rm K}}^{\rm c}$. We construct a phase diagram characterizing the transition of the end states.
Received: 24 July 2022      Published: 24 October 2022
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/117101       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/117101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Neng Xie
Danqing Hu
Shu Chen
and Yi-feng Yang
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[4] Bernevig B A, Hughes T L, and Zhang S C 2005 Phys. Rev. Lett. 95 066601
[5] Lang L J, Cai X M, and Chen S 2012 Phys. Rev. Lett. 108 220401
[6] Kraus Y E, Lahini Y, Ringel Z, Verbin M, and Zilberberg O 2012 Phys. Rev. Lett. 109 106402
[7] Hofstadter D R 1976 Phys. Rev. B 14 2239
[8] Dzero M, Sun K, Galitski V, and Coleman P 2010 Phys. Rev. Lett. 104 106408
[9] Lu F, Zhao J Z, Weng H M, Fang Z, and Dai X 2013 Phys. Rev. Lett. 110 096401
[10] Wolgast S, Kurdak C, Sun K, Allen J W, Kim D J, and Fisk Z 2013 Phys. Rev. B 88 180405
[11] Kim D J, Thomas S, Grant T, Botimer J, Fisk Z, and Xia J 2013 Sci. Rep. 3 3150
[12] Zhang J, Zhang S, Chen Z et al. 2018 Chin. Phys. B 27 097103
[13] Alexandrov V, Coleman P, and Erten O 2015 Phys. Rev. Lett. 114 177202
[14] Erten O, Ghaemi P, and Coleman P 2016 Phys. Rev. Lett. 116 046403
[15] Feng X Y, Dai J H, Chung C H, and Si Q 2013 Phys. Rev. Lett. 111 016402
[16] Zhou Y, Kim D J, Rosa P F S et al. 2015 Phys. Rev. B 92 241118(R)
[17] White S R 1992 Phys. Rev. Lett. 69 2863
[18] White S R 1993 Phys. Rev. B 48 10345
[19] Schollwöck U 2005 Rev. Mod. Phys. 77 259
[20] Xie N and Yang Y F 2015 Phys. Rev. B 91 195116
[21] Xie N, Hu D, and Yang Y F 2017 Sci. Rep. 7 11924
[22] Alvarez G 2009 Comput. Phys. Commun. 180 1572
[23] Rice M J and Mele E J 1982 Phys. Rev. Lett. 49 1455
[24] Su W P, Schrieffer J R, and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[25] Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959
[26] Fukui T, Hatsugai Y, and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 117101
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 117101
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 117101
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 117101
[5] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 117101
[6] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 117101
[7] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 117101
[8] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 117101
[9] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 117101
[10] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 117101
[11] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 117101
[12] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 117101
[13] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 117101
[14] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 117101
[15] Guoxiong Tang, Libin Wen, Hui Xing, Wenjie Liu, Jin Peng, Yu Wang, Yupeng Li, Baijiang Lv, Yusen Yang, Chao Yao, Yueshen Wu, Hong Sun, Zhu-An Xu, Zhiqiang Mao, and Ying Liu. Structural Domain Imaging and Direct Determination of Crystallographic Orientation in Noncentrosymmetric Ca$_{3}$Ru$_{2}$O$_{7}$ Using Polarized Light Reflectance[J]. Chin. Phys. Lett., 2020, 37(10): 117101
Viewed
Full text


Abstract