Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 116401    DOI: 10.1088/0256-307X/39/11/116401
Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)
Hexu Zhang1,2, Yuanhao Lyu1,2, Wenqi Hu1,2, Lan Chen1,2,3, Yi-Qi Zhang1,3*, and Kehui Wu1,2,3*
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Hexu Zhang, Yuanhao Lyu, Wenqi Hu et al  2022 Chin. Phys. Lett. 39 116401
Download: PDF(27534KB)   PDF(mobile)(28854KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The structural evolution of supramolecular phases of melamine on Ag(111) surface as a function of annealing temperature is investigated by employing low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS). It is found that partial deprotonation of the melamine molecules leads to formation of distinct types of ordered supramolecular arrangements. Apart from two previously reported phases ($\alpha$ and $\beta$), a new phase comprising arrays of close-packed hexagonal core-shell-type clusters is identified for the first time. Based on high-resolution STM images as well as structural modeling, we show that the new phase presents a two-level hierarchical order and chirality is expressed at both levels. Using STS characterization, we further reveal that the chiral arrangement of the clusters confines surface electrons into a honeycomb pathway with handedness, which could give rise to novel interfacial electronic properties such as Dirac fermions as well as flat band.
Received: 07 September 2022      Published: 19 October 2022
PACS:  64.75.Yz (Self-assembly)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics) (Polymers and organics)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Hexu Zhang
Yuanhao Lyu
Wenqi Hu
Lan Chen
Yi-Qi Zhang
and Kehui Wu
[1]Lehn J M 1995 Supramolecular Chemistry: Concepts and Perspectives (Weinheim: VCH)
[2] Desiraju G R 2001 Nature 412 397
[3] Lehn J M 2013 Angew. Chem. Int. Ed. 52 2836
[4] Barth J V, Costantini G, and Kern K 2005 Nature 437 671
[5] Barth J V 2007 Annu. Rev. Phys. Chem. 58 375
[6] Bartels L 2010 Nat. Chem. 2 87
[7] Dong L, Gao Z A, and Lin N 2016 Prog. Surf. Sci. 91 101
[8] Mali K S, Pearce N, De Feyter S, and Champness N R 2017 Chem. Soc. Rev. 46 2520
[9] Goronzy D P, Ebrahimi M, Rosei F, A, Fang Y, De Feyter S, Tait S L, Wang C, Beton P H, Wee A T S, Weiss P S, and Perepichka D F 2018 ACS Nano 12 7445
[10] Wasio N A, Quardokus R C, Forrest R P, Lent C S, Corcelli S A, Christie J A, Henderson K W, and Kandel S A 2014 Nature 507 86
[11] Shang J, Wang Y, Chen M, Dai J, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried J M, and Wu K 2015 Nat. Chem. 7 389
[12] Otero R, Lukas M, Kelly R E A, Xu W, Lægsgaard E, Stensgaard I, Kantorovich L N, and Besenbacher F 2008 Science 319 312
[13] Blunt M O, Russell J C, Giménez-López M D C, Garrahan J P, Lin X, Schröder M, Champness N R, and Beton P H 2008 Science 322 1077
[14] Marschall M, Reichert J, Weber-Bargioni A, Seufert K, Auwärter W, Klyatskaya S, Zoppellaro G, Ruben M, and Barth J V 2010 Nat. Chem. 2 131
[15] Urgel J I, Écija D, Lyu G, Zhang R, Palma C A, Auwärter W, Lin N, and Barth J V 2016 Nat. Chem. 8 657
[16] Jing C, Zhang B, Synkule S, Ebrahimi M, Riss A, Auwärter W, Jiang L, Médard G, Reichert J, Barth J V, and Papageorgiou A C 2019 Angew. Chem. Int. Ed. 58 18948
[17] Cai L, Huang Y, Wang D, Zhang W, Wang Z, and Wee A T S 2022 J. Phys. Chem. Lett. 13 2180
[18] Zhang Y Q, Paszkiewicz M, Du P, Zhang L, Lin T, Chen Z, Klyatskaya S, Ruben M, Seitsonen A P, Barth J V, and Klappenberger F 2018 Nat. Chem. 10 296
[19] Liu J, Chen Q, Cai K, Li J, Li Y, Yang X, Zhang Y, Wang Y, Tang H, Zhao D, and Wu K 2019 Nat. Commun. 10 2545
[20] Kormoš L, Procházka P, Makoveev A O, and Čechal J 2020 Nat. Commun. 11 1856
[21] Adisoejoso J, Tahara K, Okuhata S, Lei S, Tobe Y, and De Feyter S 2009 Angew. Chem. Int. Ed. 48 7353
[22] Ciesielski A, Palma C A, Bonini M, and Samorì P 2010 Adv. Mater. 22 3506
[23] Velpula G, Takeda T, Adisoejoso J, Inukai K, Tahara K, Mali K S, Tobe Y, and De Feyter S 2017 Chem. Commun. 53 1108
[24] Pfeiffer C R, Pearce N, and Champness N R 2017 Chem. Commun. 53 11528
[25] Bouju X, Mattioli C, Franc G, Pujol A, and Gourdon A 2017 Chem. Rev. 117 1407
[26] Swarbrick J C, Rogers B L, Champness N R, and Beton P H 2006 J. Phys. Chem. B 110 6110
[27] Perdigão L M A, Perkins E W, Ma J, Staniec P A, Rogers B L, Champness N R, and Beton P H 2006 J. Phys. Chem. B 110 12539
[28] Xu W, Dong M, Gersen H, Rauls E, Vázquez-Campos S, Crego-Calama M, Reinhoudt D N, Stensgaard I, Lægsgaard E, Linderoth T R, and Besenbacher F 2007 Small 3 854
[29] Zhang H M, Xie Z X, Long L S, Zhong H P, Zhao W, Mao B W, Xu X, and Zheng L S 2008 J. Phys. Chem. C 112 4209
[30] Madueno R, Räisänen M T, Silien C, and Buck M 2008 Nature 454 618
[31] Lin Y P, Ourdjini O, Giovanelli L, Clair S, Faury T, Ksari Y, Themlin J M, Porte L, and Abel M 2013 J. Phys. Chem. C 117 9895
[32] Chen Y, Chen C, Ding P, Shi G, Sun Y, Kantorovich L N, Besenbacher F, and Yu M 2020 Nano Res. 13 2427
[33] Theobald J A, Oxtoby N S, Phillips M A, Champness N R, and Beton P H 2003 Nature 424 1029
[34] Karamzadeh B, Eaton T, Torres D M, Cebula I, Mayor M, and Buck M 2017 Faraday Discuss. 204 173
[35] Wieghold S, Li J, Simon P, Krause M, Avlasevich Y, Li C, Garrido J A, Heiz U, Samorì P, Müllen K, Esch F, Barth J V, and Palma C A 2016 Nat. Commun. 7 10700
[36] Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J O, Schlögl R, and Carlsson J M 2008 J. Mater. Chem. 18 4893
[37] Ong W J, Tan L L, Ng Y H, Yong S T, and Chai S P 2016 Chem. Rev. 116 7159
[38] Silly F, Shaw A Q, Castell M R, Briggs G A D, Mura M, Martsinovich N, and Kantorovich L 2008 J. Phys. Chem. C 112 11476
[39] Pan S, Fu Q, Huang T, Zhao A, Wang B, Luo Y, Yang J, and Hou J 2009 Proc. Natl. Acad. Sci. USA 106 15259
[40] Schmitz C H, Ikonomov J, and Sokolowski M 2011 Surf. Sci. 605 1
[41] Greenwood J, Früchtl H A, and Baddeley C J 2012 J. Phys. Chem. C 116 6685
[42] Greenwood J, Früchtl H A, and Baddeley C J 2013 J. Phys. Chem. C 117 22874
[43] Wang L, Chen Q, Shi H, Liu H, Ren X, Wang B, Wu K, and Shao X 2016 Phys. Chem. Chem. Phys. 18 2324
[44] Shi H X, Wang W Y, Li Z, Wang L, and Shao X 2017 Chin. J. Chem. Phys. 30 443
[45] Wang L, Li P, Shi H, Li Z, Wu K, and Shao X 2017 J. Phys. Chem. C 121 7977
[46] Wang L, Shi H X, Wang W Y, Shi H, and Shao X 2017 Acta Phys.-Chim. Sin. 33 393
[47] Zhang P, Chen L, Sheng S, Hu W, Liu H, Ma C, Liu Z, Feng B, Cheng P, Zhang Y, Chen L, Zhao J, and Wu K 2022 J. Chem. Phys. 156 204301
[48] Jensen S, Früchtl H, and Baddeley C J 2009 J. Am. Chem. Soc. 131 16706
[49] Gardener J A, Shvarova O Y, Briggs G A D, and Castell M R 2010 J. Phys. Chem. C 114 5859
[50] Jensen S, Greenwood J, Früchtl H A, and Baddeley C J 2011 J. Phys. Chem. C 115 8630
[51] Greenwood J and Baddeley C J 2013 Langmuir 29 653
[52] Neese F 2012 WWIREs: Comput. Mol. Sci. 2 73
[53] Zhu H, Niu T, and Li A 2019 Langmuir 35 3507
[54]Ernst K H 2006 Supramolecular Surface Chirality. In: Crego-Calama M and Reinhoudt D N (eds) Supramolecular Chirality. Topics in Current Chemistry (Berlin: Springer) vol 265 p 209
[55] Raval R 2009 Chem. Soc. Rev. 38 707
[56] Ernst K H 2012 Phys. Status Solidi B 249 2057
[57] Lei S, Surin M, Tahara K, Adisoejoso J, Lazzaroni R, Tobe Y, and Feyter S D 2008 Nano Lett. 8 2541
[58] Grünbaum B and Shephard G C 1977 Math. Mag. 50 227
[59] Chavey D 1989 Comput. & Math. Appl. 17 147
[60] Spillmann H, Dmitriev A, Lin N, Messina P, Barth J V, and Kern K 2003 J. Am. Chem. Soc. 125 10725
[61] Blüm M C, Ćavar E, Pivetta M, Patthey F, and Schneider W D 2005 Angew. Chem. Int. Ed. 44 5334
[62] Li J, Schneider W D, Berndt R, Bryant O R, and Crampin S 1998 Phys. Rev. Lett. 81 4464
[63] Li J, Schneider W D, Crampin S, and Berndt R 1999 Surf. Sci. 422 95
[64] Kepčija N, Huang T J, Klappenberger F, and Barth J V 2015 J. Chem. Phys. 142 101931
[65] Piquero-Zulaica I, Lobo-Checa J, El-Fattah Z M A, Ortega J E, Klappenberger F, Auwärter W, and Barth J V 2021 arXiv:2107.10141 [cond-mat.mes-hall]
[66] Gomes K K, Mar W, Ko W, Guinea F, and Manoharan H C 2012 Nature 483 306
[67] Polini M, Guinea F, Lewenstein M, Manoharan H C, and Pellegrini V 2013 Nat. Nanotechnol. 8 625
[68] Wang S, Tan L Z, Wang W, Louie S G, and Lin N 2014 Phys. Rev. Lett. 113 196803
[69] Yue S, Zhou H, Geng D, Sun Z, Arita M, Shimada K, Cheng P, Chen L, Meng S, Wu K, and Feng B 2020 Phys. Rev. B 102 201401
[70] Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh M J, Edmonds M, Jelínek P, Wu J, and Lu J 2021 Sci. Adv. 7 eabf0269
[71] Nowakowska S, Wäckerlin A, Piquero-Zulaica I, Nowakowski J, Kawai S, Wäckerlin C, Matena M, Nijs T, Fatayer S, Popova O, Ahsan A, Mousavi S F, Ivas T, Meyer E, Stöhr M, Ortega J E, Björk J, Gade L H, Lobo-Checa J, and Jung T A 2016 Small 12 3757
[72] Hu W, Kher-Elden M A, Zhang H, Cheng P, Chen L, Piquero-Zulaica I, Abd E F Z M, Barth J V, Wu K, and Zhang Y Q 2022 Nanoscale 14 7039
Related articles from Frontiers Journals
[1] Qing Yang, Huan Liang, Rui Liu, Ke Chen, Fangfu Ye, and Mingcheng Yang. Edge Transport and Self-Assembly of Passive Objects in a Chiral Active Fluid[J]. Chin. Phys. Lett., 2021, 38(12): 116401
[2] Weiyu Xie, Yu Zhu, Jianpeng Wang, Aihua Cheng, Zhigang Wang. Magnetic Coupling Induced Self-Assembly at Atomic Level[J]. Chin. Phys. Lett., 2019, 36(11): 116401
[3] Liang Zhao, Yu-Song Tu, Chun-Lei Wang, Hai-Ping Fang. Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions[J]. Chin. Phys. Lett., 2016, 33(03): 116401
[4] PAN Jun-Xing, ZHANG Jin-Jun, WANG Bao-Feng, WU Hai-Shun, SUN Min-Na . Harnessing Light and Single Masks to Create Multiple Patterns in a Ternary Blend with Photoinduced Reaction[J]. Chin. Phys. Lett., 2013, 30(7): 116401
[5] PAN Jun-Xing, ZHANG Jin-Jun, WANG Bao-Feng, WU Hai-Shun, SUN Min-Na. A Diblock-Diblock Copolymer Mixture under Parallel Wall Confinement[J]. Chin. Phys. Lett., 2013, 30(4): 116401
[6] TIE Zuo-Xiu, QIN Meng**, ZOU Da-Wei, CAO Yi**, WANG Wei . Photo-Crosslinking Induced Geometric Restriction Controls the Self-Assembly of Diphenylalanine Based Peptides[J]. Chin. Phys. Lett., 2011, 28(2): 116401
Full text