CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111) |
Hexu Zhang1,2, Yuanhao Lyu1,2, Wenqi Hu1,2, Lan Chen1,2,3, Yi-Qi Zhang1,3*, and Kehui Wu1,2,3* |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Hexu Zhang, Yuanhao Lyu, Wenqi Hu et al 2022 Chin. Phys. Lett. 39 116401 |
|
|
Abstract The structural evolution of supramolecular phases of melamine on Ag(111) surface as a function of annealing temperature is investigated by employing low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS). It is found that partial deprotonation of the melamine molecules leads to formation of distinct types of ordered supramolecular arrangements. Apart from two previously reported phases ($\alpha$ and $\beta$), a new phase comprising arrays of close-packed hexagonal core-shell-type clusters is identified for the first time. Based on high-resolution STM images as well as structural modeling, we show that the new phase presents a two-level hierarchical order and chirality is expressed at both levels. Using STS characterization, we further reveal that the chiral arrangement of the clusters confines surface electrons into a honeycomb pathway with handedness, which could give rise to novel interfacial electronic properties such as Dirac fermions as well as flat band.
|
|
Received: 07 September 2022
Published: 19 October 2022
|
|
PACS: |
64.75.Yz
|
(Self-assembly)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
68.55.am
|
(Polymers and organics)
|
|
|
|
|
[1] | Lehn J M 1995 Supramolecular Chemistry: Concepts and Perspectives (Weinheim: VCH) |
[2] | Desiraju G R 2001 Nature 412 397 |
[3] | Lehn J M 2013 Angew. Chem. Int. Ed. 52 2836 |
[4] | Barth J V, Costantini G, and Kern K 2005 Nature 437 671 |
[5] | Barth J V 2007 Annu. Rev. Phys. Chem. 58 375 |
[6] | Bartels L 2010 Nat. Chem. 2 87 |
[7] | Dong L, Gao Z A, and Lin N 2016 Prog. Surf. Sci. 91 101 |
[8] | Mali K S, Pearce N, De Feyter S, and Champness N R 2017 Chem. Soc. Rev. 46 2520 |
[9] | Goronzy D P, Ebrahimi M, Rosei F, A, Fang Y, De Feyter S, Tait S L, Wang C, Beton P H, Wee A T S, Weiss P S, and Perepichka D F 2018 ACS Nano 12 7445 |
[10] | Wasio N A, Quardokus R C, Forrest R P, Lent C S, Corcelli S A, Christie J A, Henderson K W, and Kandel S A 2014 Nature 507 86 |
[11] | Shang J, Wang Y, Chen M, Dai J, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried J M, and Wu K 2015 Nat. Chem. 7 389 |
[12] | Otero R, Lukas M, Kelly R E A, Xu W, Lægsgaard E, Stensgaard I, Kantorovich L N, and Besenbacher F 2008 Science 319 312 |
[13] | Blunt M O, Russell J C, Giménez-López M D C, Garrahan J P, Lin X, Schröder M, Champness N R, and Beton P H 2008 Science 322 1077 |
[14] | Marschall M, Reichert J, Weber-Bargioni A, Seufert K, Auwärter W, Klyatskaya S, Zoppellaro G, Ruben M, and Barth J V 2010 Nat. Chem. 2 131 |
[15] | Urgel J I, Écija D, Lyu G, Zhang R, Palma C A, Auwärter W, Lin N, and Barth J V 2016 Nat. Chem. 8 657 |
[16] | Jing C, Zhang B, Synkule S, Ebrahimi M, Riss A, Auwärter W, Jiang L, Médard G, Reichert J, Barth J V, and Papageorgiou A C 2019 Angew. Chem. Int. Ed. 58 18948 |
[17] | Cai L, Huang Y, Wang D, Zhang W, Wang Z, and Wee A T S 2022 J. Phys. Chem. Lett. 13 2180 |
[18] | Zhang Y Q, Paszkiewicz M, Du P, Zhang L, Lin T, Chen Z, Klyatskaya S, Ruben M, Seitsonen A P, Barth J V, and Klappenberger F 2018 Nat. Chem. 10 296 |
[19] | Liu J, Chen Q, Cai K, Li J, Li Y, Yang X, Zhang Y, Wang Y, Tang H, Zhao D, and Wu K 2019 Nat. Commun. 10 2545 |
[20] | Kormoš L, Procházka P, Makoveev A O, and Čechal J 2020 Nat. Commun. 11 1856 |
[21] | Adisoejoso J, Tahara K, Okuhata S, Lei S, Tobe Y, and De Feyter S 2009 Angew. Chem. Int. Ed. 48 7353 |
[22] | Ciesielski A, Palma C A, Bonini M, and Samorì P 2010 Adv. Mater. 22 3506 |
[23] | Velpula G, Takeda T, Adisoejoso J, Inukai K, Tahara K, Mali K S, Tobe Y, and De Feyter S 2017 Chem. Commun. 53 1108 |
[24] | Pfeiffer C R, Pearce N, and Champness N R 2017 Chem. Commun. 53 11528 |
[25] | Bouju X, Mattioli C, Franc G, Pujol A, and Gourdon A 2017 Chem. Rev. 117 1407 |
[26] | Swarbrick J C, Rogers B L, Champness N R, and Beton P H 2006 J. Phys. Chem. B 110 6110 |
[27] | Perdigão L M A, Perkins E W, Ma J, Staniec P A, Rogers B L, Champness N R, and Beton P H 2006 J. Phys. Chem. B 110 12539 |
[28] | Xu W, Dong M, Gersen H, Rauls E, Vázquez-Campos S, Crego-Calama M, Reinhoudt D N, Stensgaard I, Lægsgaard E, Linderoth T R, and Besenbacher F 2007 Small 3 854 |
[29] | Zhang H M, Xie Z X, Long L S, Zhong H P, Zhao W, Mao B W, Xu X, and Zheng L S 2008 J. Phys. Chem. C 112 4209 |
[30] | Madueno R, Räisänen M T, Silien C, and Buck M 2008 Nature 454 618 |
[31] | Lin Y P, Ourdjini O, Giovanelli L, Clair S, Faury T, Ksari Y, Themlin J M, Porte L, and Abel M 2013 J. Phys. Chem. C 117 9895 |
[32] | Chen Y, Chen C, Ding P, Shi G, Sun Y, Kantorovich L N, Besenbacher F, and Yu M 2020 Nano Res. 13 2427 |
[33] | Theobald J A, Oxtoby N S, Phillips M A, Champness N R, and Beton P H 2003 Nature 424 1029 |
[34] | Karamzadeh B, Eaton T, Torres D M, Cebula I, Mayor M, and Buck M 2017 Faraday Discuss. 204 173 |
[35] | Wieghold S, Li J, Simon P, Krause M, Avlasevich Y, Li C, Garrido J A, Heiz U, Samorì P, Müllen K, Esch F, Barth J V, and Palma C A 2016 Nat. Commun. 7 10700 |
[36] | Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J O, Schlögl R, and Carlsson J M 2008 J. Mater. Chem. 18 4893 |
[37] | Ong W J, Tan L L, Ng Y H, Yong S T, and Chai S P 2016 Chem. Rev. 116 7159 |
[38] | Silly F, Shaw A Q, Castell M R, Briggs G A D, Mura M, Martsinovich N, and Kantorovich L 2008 J. Phys. Chem. C 112 11476 |
[39] | Pan S, Fu Q, Huang T, Zhao A, Wang B, Luo Y, Yang J, and Hou J 2009 Proc. Natl. Acad. Sci. USA 106 15259 |
[40] | Schmitz C H, Ikonomov J, and Sokolowski M 2011 Surf. Sci. 605 1 |
[41] | Greenwood J, Früchtl H A, and Baddeley C J 2012 J. Phys. Chem. C 116 6685 |
[42] | Greenwood J, Früchtl H A, and Baddeley C J 2013 J. Phys. Chem. C 117 22874 |
[43] | Wang L, Chen Q, Shi H, Liu H, Ren X, Wang B, Wu K, and Shao X 2016 Phys. Chem. Chem. Phys. 18 2324 |
[44] | Shi H X, Wang W Y, Li Z, Wang L, and Shao X 2017 Chin. J. Chem. Phys. 30 443 |
[45] | Wang L, Li P, Shi H, Li Z, Wu K, and Shao X 2017 J. Phys. Chem. C 121 7977 |
[46] | Wang L, Shi H X, Wang W Y, Shi H, and Shao X 2017 Acta Phys.-Chim. Sin. 33 393 |
[47] | Zhang P, Chen L, Sheng S, Hu W, Liu H, Ma C, Liu Z, Feng B, Cheng P, Zhang Y, Chen L, Zhao J, and Wu K 2022 J. Chem. Phys. 156 204301 |
[48] | Jensen S, Früchtl H, and Baddeley C J 2009 J. Am. Chem. Soc. 131 16706 |
[49] | Gardener J A, Shvarova O Y, Briggs G A D, and Castell M R 2010 J. Phys. Chem. C 114 5859 |
[50] | Jensen S, Greenwood J, Früchtl H A, and Baddeley C J 2011 J. Phys. Chem. C 115 8630 |
[51] | Greenwood J and Baddeley C J 2013 Langmuir 29 653 |
[52] | Neese F 2012 WWIREs: Comput. Mol. Sci. 2 73 |
[53] | Zhu H, Niu T, and Li A 2019 Langmuir 35 3507 |
[54] | Ernst K H 2006 Supramolecular Surface Chirality. In: Crego-Calama M and Reinhoudt D N (eds) Supramolecular Chirality. Topics in Current Chemistry (Berlin: Springer) vol 265 p 209 |
[55] | Raval R 2009 Chem. Soc. Rev. 38 707 |
[56] | Ernst K H 2012 Phys. Status Solidi B 249 2057 |
[57] | Lei S, Surin M, Tahara K, Adisoejoso J, Lazzaroni R, Tobe Y, and Feyter S D 2008 Nano Lett. 8 2541 |
[58] | Grünbaum B and Shephard G C 1977 Math. Mag. 50 227 |
[59] | Chavey D 1989 Comput. & Math. Appl. 17 147 |
[60] | Spillmann H, Dmitriev A, Lin N, Messina P, Barth J V, and Kern K 2003 J. Am. Chem. Soc. 125 10725 |
[61] | Blüm M C, Ćavar E, Pivetta M, Patthey F, and Schneider W D 2005 Angew. Chem. Int. Ed. 44 5334 |
[62] | Li J, Schneider W D, Berndt R, Bryant O R, and Crampin S 1998 Phys. Rev. Lett. 81 4464 |
[63] | Li J, Schneider W D, Crampin S, and Berndt R 1999 Surf. Sci. 422 95 |
[64] | Kepčija N, Huang T J, Klappenberger F, and Barth J V 2015 J. Chem. Phys. 142 101931 |
[65] | Piquero-Zulaica I, Lobo-Checa J, El-Fattah Z M A, Ortega J E, Klappenberger F, Auwärter W, and Barth J V 2021 arXiv:2107.10141 [cond-mat.mes-hall] |
[66] | Gomes K K, Mar W, Ko W, Guinea F, and Manoharan H C 2012 Nature 483 306 |
[67] | Polini M, Guinea F, Lewenstein M, Manoharan H C, and Pellegrini V 2013 Nat. Nanotechnol. 8 625 |
[68] | Wang S, Tan L Z, Wang W, Louie S G, and Lin N 2014 Phys. Rev. Lett. 113 196803 |
[69] | Yue S, Zhou H, Geng D, Sun Z, Arita M, Shimada K, Cheng P, Chen L, Meng S, Wu K, and Feng B 2020 Phys. Rev. B 102 201401 |
[70] | Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh M J, Edmonds M, Jelínek P, Wu J, and Lu J 2021 Sci. Adv. 7 eabf0269 |
[71] | Nowakowska S, Wäckerlin A, Piquero-Zulaica I, Nowakowski J, Kawai S, Wäckerlin C, Matena M, Nijs T, Fatayer S, Popova O, Ahsan A, Mousavi S F, Ivas T, Meyer E, Stöhr M, Ortega J E, Björk J, Gade L H, Lobo-Checa J, and Jung T A 2016 Small 12 3757 |
[72] | Hu W, Kher-Elden M A, Zhang H, Cheng P, Chen L, Piquero-Zulaica I, Abd E F Z M, Barth J V, Wu K, and Zhang Y Q 2022 Nanoscale 14 7039 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|