Chin. Phys. Lett.  2022, Vol. 39 Issue (1): 017302    DOI: 10.1088/0256-307X/39/1/017302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
In-Plane Magnetization-Induced Corner States in Bismuthene
Bin Han1,2, Junjie Zeng1,2, and Zhenhua Qiao1,2*
1ICQD, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
2CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Bin Han, Junjie Zeng, and Zhenhua Qiao 2022 Chin. Phys. Lett. 39 017302
Download: PDF(1569KB)   PDF(mobile)(1665KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically demonstrate that the electronic second-order topological insulator with robust corner states, having a buckled honeycomb lattice, can be realized in bismuthene by inducing in-plane magnetization. Based on the $sp^3$ Slater–Koster tight-binding model with parameters extracted from first-principles results, we show that spin-helical edge states along zigzag boundaries are gapped out by the in-plane magnetization whereas four robust in-gap electronic corner states at the intersection between two zigzag boundaries arise. By regulating the orientation of in-plane magnetization, we show different position distribution of four corner states with different energies. Nevertheless, it respects some spatial symmetries and thus can protect the higher-order topological phase. Combined with the Kane–Mele model, we discuss the influence of the magnetization orientation on the position distribution of corner states.
Received: 27 October 2021      Published: 29 December 2021
PACS:  73.43.Nq (Quantum phase transitions)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.43.-f (Quantum Hall effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/1/017302       OR      https://cpl.iphy.ac.cn/Y2022/V39/I1/017302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin Han
Junjie Zeng
and Zhenhua Qiao
[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[2] Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757
[3] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[4] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[5] Ren Y, Qiao Z, and Niu Q 2016 Rep. Prog. Phys. 79 066501
[6] Benalcazar W A, Bernevig B A, and Hughes T L 2017 Phys. Rev. B 96 245115
[7] Benalcazar W A, Bernevig B A, and Hughes T L 2017 Science 357 61
[8] Song Z, Fang Z, and Fang C 2017 Phys. Rev. Lett. 119 246402
[9] Ezawa M 2018 Phys. Rev. B 97 155305
[10] Schindler F, Brzezińska M, Benalcazar W A, Iraola M, Bouhon A, Tsirkin S S, Vergniory M G, and Neupert T 2019 Phys. Rev. Res. 1 033074
[11] Benalcazar W A, Li T, and Hughes T L 2019 Phys. Rev. B 99 245151
[12] Li T, Zhu P, Benalcazar W A, and Hughes T L 2020 Phys. Rev. B 101 115115
[13] van Miert G and Ortix C 2018 Phys. Rev. B 98 081110
[14] Langbehn J, Peng Y, Trifunovic L, von Oppen F, and Brouwer P W 2017 Phys. Rev. Lett. 119 246401
[15] Wieder B J and Bernevig B A 2018 arXiv:1810.02373 [cond-mat.mes-hall]
[16] Wang Z, Wieder B J, Li J, Yan B, and Bernevig B A 2019 Phys. Rev. Lett. 123 186401
[17] Zhang W, Xie X, Hao H, Dang J, Xiao S, Shi S, Ni H, Niu Z, Wang C, Jin K, Zhang X, and Xu X 2020 Light: Sci. & Appl. 9 109
[18] Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, and Chen Y F 2019 Phys. Rev. Lett. 122 233903
[19] Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, and Dong J W 2019 Phys. Rev. Lett. 122 233902
[20] Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y, and Iwamoto S 2019 Optica 6 786
[21] Peterson C W, Benalcazar W A, Hughes T L, and Bahl G 2018 Nature 555 346
[22] Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A, and Hafezi M 2019 Nat. Photon. 13 692
[23] Hassan A E, Kunst F K, Moritz A, Andler G, Bergholtz E J, and Bourennane M 2019 Nat. Photon. 13 697
[24] Zangeneh-Nejad F and Fleury R 2019 Phys. Rev. Lett. 123 053902
[25] Yang Y, Jia Z, Wu Y, Xiao R C, Hang Z H, Jiang H, and Xie X C 2020 Sci. Bull. 65 531
[26] Zhang X, Wang H X, Lin Z K, Tian Y, Xie B, Lu M H, Chen Y F, and Jiang J H 2019 Nat. Phys. 15 582
[27] Ni X, Weiner M, Alù A, and Khanikaev A B 2019 Nat. Mater. 18 113
[28] Xue H, Yang Y, Gao F, Chong Y, and Zhang B 2019 Nat. Mater. 18 108
[29] Fan H, Xia B, Tong L, Zheng S, and Yu D 2019 Phys. Rev. Lett. 122 204301
[30] Zhang X, Lin Z K, Wang H X, Xiong Z, Tian Y, Lu M H, Chen Y F, and Jiang J H 2020 Nat. Commun. 11 65
[31] Zhang Z, Long H, Liu C, Shao C, Cheng Y, Liu X, and Christensen J 2019 Adv. Mater. 31 1904682
[32] Lin Z K, Wu S Q, Wang H X, and Jiang J H 2020 Chin. Phys. Lett. 37 074302
[33] Liu B, Zhao G, Liu Z, and Wang Z F 2019 Nano Lett. 19 6492
[34] Park M J, Kim Y, Cho G Y, and Lee S B 2019 Phys. Rev. Lett. 123 216803
[35] Sheng X L, Chen C, Liu H, Chen Z, Yu Z M, Zhao Y X 1 and Yang S A 2019 Phys. Rev. Lett. 123 256402
[36] Su Z, Kang Y, Zhang B, Zhang Z, and Jiang H 2019 Chin. Phys. B 28 117301
[37] Lee E, Kim R, Ahn J, and Yang B J 2020 npj Quantum Mater. 5 1
[38] Ren Y, Qiao Z, and Niu Q 2020 Phys. Rev. Lett. 124 166804
[39] Chen C, Song Z, Zhao J Z, Chen Z, Yu Z M, Sheng X L, and Yang S A 2020 Phys. Rev. Lett. 125 056402
[40] Wang K T, Ren Y, Xu F, Wei Y, and Wang J 2021 Sci. Chin. Phys. Mech. & Astron. 64 257811
[41] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, and Niu Q 2010 Phys. Rev. B 82 161414
[42] Tse W K, Qiao Z, Yao Y, MacDonald A H, and Niu Q 2011 Phys. Rev. B 83 155447
[43] Sui Q, Zhang J, Jin S, Xia Y, and Li G 2020 Chin. Phys. Lett. 37 097301
[44] Zhong P, Ren Y, Han Y, Zhang L, and Qiao Z 2017 Phys. Rev. B 96 241103
[45] Thouless D J, Kohmoto M, Nightingale M P, and den Nijs M 1982 Phys. Rev. Lett. 49 405
[46] Kohmoto M 1985 Ann. Phys. 160 343
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 017302
[2] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 017302
[3] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 017302
[4] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 017302
[5] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 017302
[6] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 017302
[7] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 017302
[8] Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu, Jian-Fa Zhao, Cheng Dong, Guang-Yang Dai, Xiao-Dong Li, He-Chang Lei, Run-Ze Yu, Guang-Ming Zhang, and Chang-Qing Jin. Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 017302
[9] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 017302
[10] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 017302
[11] Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li, Su-Huai Wei, Jun-Wei Luo. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator[J]. Chin. Phys. Lett., 2018, 35(5): 017302
[12] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, L.-M. Duan. Probe Knots and Hopf Insulators with Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(1): 017302
[13] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 017302
[14] Ling-Xiao Zhao, Xiao-Chun Huang, Yu-Jia Long, Dong Chen, Hui Liang, Zhan-Hai Yang, Mian-Qi Xue, Zhi-An Ren, Hong-Ming Weng, Zhong Fang, Xi Dai, Gen-Fu Chen. Anomalous Magneto-Transport Behavior in Transition Metal Pentatelluride HfTe$_{5}$[J]. Chin. Phys. Lett., 2017, 34(3): 017302
[15] Guang-Tong Liu, Yu-Ying Zhu, Qin Wang, Yuan Pang, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Li Lu, Rui-Rui Du, L. N. Pfeiffer, K. W. West. Observation of an Even–Odd Asymmetric Transport in High Landau Levels[J]. Chin. Phys. Lett., 2017, 34(3): 017302
Viewed
Full text


Abstract