Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 068101    DOI: 10.1088/0256-307X/38/6/068101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa
Ding-Ming Huang1,2, Jie-Yin Zhang1,2, Jian-Huan Wang1,2, Wen-Qi Wei1,3, Zi-Hao Wang1,2, Ting Wang1,2,3, and Jian-Jun Zhang1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang et al  2021 Chin. Phys. Lett. 38 068101
Download: PDF(2784KB)   PDF(mobile)(3706KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaAs/Ge heterostructures have been employed in various semiconductor devices such as solar cells, high-performance CMOS transistors, and III–V/IV heterogeneous optoelectronic devices. The performance of these devices is directly dependent on the material quality of the GaAs/Ge heterostructure, while the material quality of the epitaxial GaAs layer on the Ge is limited by issues such as the antiphase domain (APD), and stacking-fault pyramids (SFP). We investigate the epitaxial growth of high-quality GaAs on a Ge (001) mesa array, via molecular beam epitaxy. Following a systematic study of the Ge terrace via an in situ scanning tunneling microscope, an atomically step-free terrace on the Ge mesa measuring up to $5 \times 5$ µm$^{2}$ is obtained, under optimized growth conditions. The step-free terrace has a single-phase $c$ ($4\times 2$) surface reconstruction. The deposition of a high-quality GaAs layer with no APD and SFP is then achieved on this step-free Ge terrace. High-resolution transmission electron microscopy and electron channel contrast image characterizations reveal the defect-free growth of the GaAs layer on the step-free Ge mesa. Furthermore, InAs quantum dots on this GaAs/Ge mesa reveal photoluminescent intensity comparable to that achieved on a GaAs substrate, which further confirms the high quality of the GaAs layer on Ge.
Received: 12 February 2021      Published: 25 May 2021
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  78.66.Fd (III-V semiconductors)  
  81.05.Ea (III-V semiconductors)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61975230, 61635011, 61804177 and 11804382), the National Key Research and Development Program of China (Grant No. 2018YFB2200104), Beijing Municipal Science and Technology Commission (Grant No. Z191100004819010), and the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-JSC009).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/6/068101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I6/068101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ding-Ming Huang
Jie-Yin Zhang
Jian-Huan Wang
Wen-Qi Wei
Zi-Hao Wang
Ting Wang
and Jian-Jun Zhang
[1] Soref R 2010 Nat. Photon. 4 495
[2] Kim S et al. 2017 Appl. Phys. Lett. 110 153505
[3] Liu H et al. 2011 Nat. Photon. 5 416
[4] Wei W Q et al. 2018 Appl. Phys. Lett. 113 053107
[5] Wei W Q, Wang J H, Zhang J Y, Feng Q, Wang Z, Xu H X, Wang T, and Zhang J J 2020 Chin. Phys. Lett. 37 024203
[6] Tobin S P et al. 1988 IEEE Electron Device Lett. 9 256
[7] Pillarisetty R 2011 Nature 479 324
[8] Chen K P et al. 2009 J. Phys. D 42 035303
[9] Kroemer H 1987 J. Cryst. Growth 81 1
[10] Sieg R M et al. 1998 J. Electron. Mater. 27 900
[11]Ting S M et al. 1998 J. Electron. Mater. 27 451
[12] Wei W Q et al. 2017 Opt. Mater. Express 7 2955
[13] Zhang J Y et al. 2020 Opt. Mater. Express 10 1045
[14] Zhang D et al. 2013 Phys. Rev. Lett. 111 156402
[15] Neddermeyer H 1996 Rep. Prog. Phys. 59 701
[16] Krug J, Politi P, and Michely T 2000 Phys. Rev. B 61 14037
[17] Shin B and Aziz M J 2007 Phys. Rev. B 76 165408
[18] McCoy J M, Maksym P A, and Kawamura T 1991 Surf. Sci. 257 353
[19] Van Vroonhoven E, Zandvliet H J W, and Poelsema B 2004 Phys. Rev. Lett. 93 116102
[20] Johnson A D et al. 1991 Phys. Rev. B 44 1134
[21] Pimpinelli A and Métois J J 1994 Phys. Rev. Lett. 72 3566
[22] Nielsen J F et al. 2001 Phys. Rev. Lett. 87 136103
Viewed
Full text


Abstract