Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 063101    DOI: 10.1088/0256-307X/38/6/063101
ATOMIC AND MOLECULAR PHYSICS |
Multi-Electron Transfer of Ar$^{+}$ Colliding with Ne Atoms Based on a Time-Dependent Density-Functional Theory
Shuai Qin1, Cong-Zhang Gao2, Wandong Yu3*, and Yi-Zhi Qu1*
1School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
3State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Cite this article:   
Shuai Qin, Cong-Zhang Gao, Wandong Yu et al  2021 Chin. Phys. Lett. 38 063101
Download: PDF(814KB)   PDF(mobile)(831KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The multi-electron capture and loss cross-sections of Ar$^{+}$–Ne collisions are calculated at absolute energies in the few-keV/a.u. regime. The calculations are performed using a novel inverse collision framework, in the context of a time-dependent density functional theory, combined with molecular dynamics. The extraction of the capture and loss probabilities is based on the particle-number projection technique, originating from nuclear physics, but validly extended to represent many-electron systems. Good agreement between experimental and theoretical data is found, which clearly reveals the non-negligible post-collision decay of the projectile's electrons, providing further evidence for the applicability of the approach to complex many-electron collision systems.
Received: 10 February 2021      Published: 25 May 2021
PACS:  31.15.ee (Time-dependent density functional theory)  
  31.15.A- (Ab initio calculations)  
  34.70.+e (Charge transfer)  
  34.80.Dp (Atomic excitation and ionization)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), and the National Natural Science Foundation of China (Grant Nos. 11774344, 11704039, 11774030, and 11704037).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/6/063101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I6/063101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai Qin
Cong-Zhang Gao
Wandong Yu
and Yi-Zhi Qu
[1] Aumayr F, Ueda K, Sokell E, Schippers S, Sadeghpour H, Merkt F D R, Gallagher T F, Dunning F B, Scheier P, Echt O, Kirchner T, Fritzsche S, Surzhykov A, Ma X, Rivarola R, Fojon O, Tribedi L, Lamour E, Crespo L U J R, Litvinov Y A, Shabaev V, Cederquist H, Zettergren H, Schleberger M, Wilhelm R A, Azuma T, Boduch P, Schmidt H T, and Stöhlker T 2019 J. Phys. B 52 171003
[2]Tolstikhina I, Imai M, Winckler N, and Shevelko V 2018 Basic Atomic Interactions of Accelerated Heavy Ions in Matter (Springer Series on Atomic, Optical and Plasma Physics) (Berlin: Springer)
[3] Isler R C 1994 Plasma Phys. Control. Fusion 36 171
[4] Niemann H B, Atreya S K, Bauer S J, Carignan G R, Demick J E, Frost R L, Gautier D, Haberman J A, Harpold D N, Hunten D M, Israel G, Lunine J I, Kasprzak W T, Owen T C, Paulkovich M, Raulin F, Raaen E, and Way S H 2005 Nature 438 779
[5] Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, TrCumper J, and West R G 1996 Science 274 205
[6] Liang G Y, Peng Y G, Li R, Wu Y, and Wang J G 2020 Chin. Phys. Lett. 37 123101
[7] Amaldi U and Kraft G 2005 Rep. Prog. Phys. 68 1861
[8] Matthew B, Tom K, and Engel E 2017 Phys. Rev. A 96 032708
[9] Ullrich J, Moshammer R, Dörner R, Jagutzki O, Mergel V, Böcking H S, and Spielberger L 1997 J. Phys. B 30 2917
[10] Ermolaev A M 1990 Phys. Lett. A 149 151
[11] Toshima N 1993 Phys. Lett. A 175 133
[12] Kirchner T, Gulyás L, Lüdde H J, Henne A, Engel E, and Dreizler R M 1997 Phys. Rev. Lett. 79 1658
[13] Lüde HJ, Horbatsch M, Henne A, and Dreizler R M 1990 Phys. Lett. A 145 173
[14] Fainstein P D, Ponce V H, and Rivarola R D 1988 J. Phys. B 21 287
[15] Schenk G and Kirchner T 2015 Phys. Rev. A 91 052712
[16] Kirchner T and Horbatsch M 2001 Phys. Rev. A 63 062718
[17] Kirchner T, Horbatsch M, and Lüdde H J 2004 J. Phys. B 37 2379
[18] Fritsch W and Lin C D 1991 Phys. Rep. 202 1
[19] Zapukhlyak M, Kirchner T, Lüdde H J, Knoop S, Morgenstern R, and Hoekstra R 2005 J. Phys. B 38 2353
[20] Imai T W, Kimura M, Gu J P, Hirsch G, Buenker R J, Wang J G, Stancil P C, and Pichl L 2003 Phys. Rev. A 68 012716
[21] Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, and Buenker R J 2020 Chin. Phys. Lett. 37 023401
[22] Gao J W, Wu Y, Wang J G, Sisourat N, and Dubois A 2018 Phys. Rev. A 97 052709
[23] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[24]Ullrich C A 2012 Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford: Oxford University Press)
[25] Wang F, Hong X, Wang J, and Kim K S 2011 J. Chem. Phys. 134 154308
[26] Hong X, Wang F, Wu Y, Gou B, and Wang J 2016 Phys. Rev. A 93 062706
[27] Bi G, Kang J, and Wang L W 2017 Phys. Chem. Chem. Phys. 19 9053
[28] Wang Z P, Zhang F S, Xu X F, and Qian C Y 2020 Chin. Phys. B 29 023401
[29] Thierry L, Katia C, Holtzman J, and Hubeny I 2008 Astrophys. J. 678 1342
[30] Deutsch H, Becker K, Grum-Grzhimailo A N, Bartschat K, Summers H, Probst M, Matt-Leubner S, and Märk T D 2004 Int. J. Mass Spectrom. 233 39
[31] Ton-That D and Flannery M R 1977 Phys. Rev. A 15 517
[32] Zhu X M and Pu Y K 2010 J. Phys. D 43 403001
[33]Pivovar L I, Novikov M T, and Dolgov A S 1966 Sov. Phys.-JETP 23 357
[34] DuBois R D, Santos A C F, Olson R E, Stöhlker T, Bosch F, Bräuning-Demian A, Gumberidze A, Hagmann S, Kozhuharov C, Mann R, Muthig A O, Spillmann U, Tachenov S, Barth W, Dahl L, Franzke B, Glatz J, Gröning L, Richter S, Wilms D, Krämer A, Ullmann K, and Jagutzki O 2003 Phys. Rev. A 68 042701
[35] Olson R E, Watson R L, Horvat V, and Zaharakis K E 2002 J. Phys. B 35 1893
[36] Olson R E, Watson R L, Horvat V, Perumal A N, Peng Y, and Stöhlker T 2004 J. Phys. B 37 4539
[37] Shevelko V P, Kato D, Litsarev M S, and Tawara H 2010 J. Phys. B 43 215202
[38] Ullrich C A, Reinhard P G, and Suraud E 2000 Phys. Rev. A 62 053202
[39] Calvayrac F, Reinhard P G, Suraud E, and Ullrich C A 2000 Phys. Rep. 337 493
[40] Maitra N T 2016 J. Chem. Phys. 144 220901
[41]Reinhard P G and Suraud E 2003 Introduction to Cluster Dynamics (New York: Wiley)
[42] Andrade X, Alberdi-Rodriguez J, Strubbe D A, Oliveira M J, Nogueira F, Castro A, Muguerza J, Arruabarrena A, Louie S G, Aspuru-Guzik A, Rubio A, and Marques M A 2012 J. Phys.: Condens. Matter 24 233202
[43] Tavernelli I, Gaigeot M P, Vuilleumier R, Stia C, Herve D P M A, and Politis M F 2008 ChemPhysChem 9 2099
[44] Avendaño-Franco G, Piraux B, Grüning M, and Gonze X 2012 Theor. Chem. Acc. 131 1289
[45] Yu W, Zhang Y, Zhang F S, Hutton R, Zou Y, Gao C Z, and Wei B 2018 J. Phys. B 51 035204
[46] Yu W, Gao C Z, Zhang Y, Zhang F S, Hutton R, Zou Y, and Wei B 2018 Phys. Rev. A 97 032706
[47] Yu W, Gao C Z, Jiang T, Zou Y, Wang J G, Wu Y, and Wei B 2019 J. Chem. Phys. 150 124304
[48] Bates D R and McCarroll R 1958 Proc. R. Soc. London Ser. A 245 175
[49] Vignale G 1995 Phys. Rev. Lett. 74 3233
[50] Yu W, Gao C Z, Sato S A, Castro A, Rubio A, and Wei B 2021 Phys. Rev. A 103 032816
[51] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, and Rubio A 2006 Physica Status Solidi (b) 243 2465
[52] Wang Z, Li S S, and Wang L W 2015 Phys. Rev. Lett. 114 063004
[53] Marques M A L, Castro A, Bertsch G F, and Rubioa A 2003 Comput. Phys. Commun. 151 60
[54] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[55] Schlipf M and Gygi F 2015 Comput. Phys. Commun. 196 36
[56] Gomez P A, Marques M A L, Rubio A, and Castro A 2018 J. Chem. Theory Comput. 14 3040
[57] Castro A, Marques M A L, and Rubio A 2004 J. Chem. Phys. 121 3425
[58] Kołakowska A, Pindzola M S, Robicheaux F, Schultz D R, and Wells J C 1998 Phys. Rev. A 58 2872
[59] Wittkower A B and Gilbody H B 1967 Proc. Phys. Soc 90 353
Viewed
Full text


Abstract