Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 027801    DOI: 10.1088/0256-307X/38/2/027801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics
Peng Chen2,3, Xianglin Kong2,3, Jianfei Han1, Weihua Wang1, Kui Han1, Hongyu Ma2,3, Lei Zhao3*, and Xiaopeng Shen1*
1School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
2National and Local Joint Engineering Laboratory of Internet Application Technology on Mine, China University of Mining and Technology, Xuzhou 221116, China
3School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
Cite this article:   
Peng Chen, Xianglin Kong, Jianfei Han et al  2021 Chin. Phys. Lett. 38 027801
Download: PDF(930KB)   PDF(mobile)(921KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An ultra-wideband metamaterial absorber is developed, which is polarized-insensitive and angular-stable. Three layers of square resistive films comprise the proposed metamaterial. The optimal values of geometric parameters are obtained, such that the designed absorber can achieve an ultra-broadband absorption response from 4.73 to 39.04 GHz (relative bandwidth of 156.7%) for both transverse electricity and transverse magnetic waves. Moreover, impedance matching theory and an equivalent circuit model are utilized for the absorption mechanism analysis. The compatibility of equivalent circuit calculation results, together with both full-wave simulation and experimental results, demonstrates the excellent performance and applicability of the proposed metamaterial absorber.
Received: 21 September 2020      Published: 27 January 2021
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Supported by the Six Talent Peaks Project in Jiangsu Province (Grant No. XYDXX-072), the National Natural Science Foundation of China (Grant Nos. 61372048 and 61771226), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20161186).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/027801       OR      https://cpl.iphy.ac.cn/Y2021/V38/I2/027801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng Chen
Xianglin Kong
Jianfei Han
Weihua Wang
Kui Han
Hongyu Ma
Lei Zhao
and Xiaopeng Shen
[1] Fallahi A, Yahaghi A, Benedickter H R et al. 2010 IEEE Trans. Antennas Propag. 58 4051
[2] Kurihara H, Hirai Y, Takizawa K et al. 2005 IEICE Trans. Electron. 125 2350
[3] Okano Y, Ogino S and Ishikawa K 2012 IEEE Trans. Microwave Theory Tech. 60 2456
[4] Thomassin J, Huynen I, Jerome R et al. 2010 Polymer 51 115
[5] Liu T, Cao X, Gao J et al. 2013 IEEE Trans. Antennas Propag. 61 1479
[6]Salisbury W W 1952 US Patent 2599944
[7] Meshram M R, Agrawal N K, Sinha B et al. 2004 J. Magn. Magn. Mater. 271 207
[8] Park M J and Kim S S 2000 IEEE Trans. Magn. 36 3272
[9] Smith D R, Padilla W J, Vier D C et al. 2000 Phys. Rev. Lett. 84 4184
[10] Chen H, Wu B, Zhang B et al. 2007 Phys. Rev. Lett. 99 63903
[11] Zhang C, Yang J, Yuan W et al. 2017 J. Phys. D 50 444002
[12] Yan M Y, Xu B J, Sun Z C et al. 2020 Chin. Phys. Lett. 37 067801
[13] Xie S H, Fang X S, Li P Q et al. 2020 Chin. Phys. Lett. 37 054301
[14] Han M K, Yin X W, Wu H et al. 2016 ACS Appl. Mater. & Interfaces 8 21011
[15] Xie Y M, Liu C Y, Ding Z J et al. 2016 Chin. Phys. Lett. 33 094208
[16] Hu J G, Xie W Q, Chen J X et al. 2020 Opt. Express 28 22095
[17] Nizamani B, Salam S, Jafry A A A et al. 2019 Chin. Phys. Lett. 36 074203
[18] Zhou K, Cheng Q, Song J L et al. 2019 Opt. Lett. 44 3430
[19] Zhang C, Yang J, Yang L X et al. 2020 Nanophotonics 9 2771
[20] Hu J G, Liu W, Xie W Q et al. 2019 Opt. Lett. 44 5642
[21] Zhang C, Yang J, Cao W K et al. 2019 Photon. Res. 7 478
[22] Sun J B, Liu L Y, Dong G Y et al. 2011 Opt. Express 19 21155
[23] Zhang C, Cheng Q, Yang J et al. 2017 Appl. Phys. Lett. 110 143511
[24] Sheokand H, Ghosh S K, Singh G et al. 2017 J. Appl. Phys. 122 105105
[25] Xiong H, Hong J S, Luo C M et al. 2013 J. Appl. Phys. 114 064109
[26] Shui W C, Li J M, Wang H et al. 2020 Adv. Opt. Mater. 8 2001120
[27] Hu J G, Qing Y M, Yang S Y et al. 2017 J. Opt. Soc. Am. B 34 861
[28] Arik K, Abdollahramezani S, Farajollahi S et al. 2016 Opt. Commun. 381 309
[29] Liu P W and Lan T 2017 Appl. Opt. 56 4201
[30] Langley R J and Parker E A 1982 Electron. Lett. 18 294
[31] Chung Y C, Lee K W, Hong I P et al. 2011 IEICE Electron. Express 8 89
[32] Zhao J, Zhang C, Cheng Q et al. 2018 Appl. Phys. Lett. 112 73504
Viewed
Full text


Abstract