CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Rational Design of Two-Dimensional Magnetic Chromium Borides Based on First-Principles Calculation |
Yi-Lin Zhang1,2, Yue-Yu Zhang3, Jin-Yang Ni1,2, Ji-Hui Yang1,2*, Hong-Jun Xiang1,2, and Xin-Gao Gong1,2* |
1Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China 2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China 3Department of Chemistry, Imperial College London, W12 0BZ, United Kingdom
|
|
Cite this article: |
Yi-Lin Zhang, Yue-Yu Zhang, Jin-Yang Ni et al 2021 Chin. Phys. Lett. 38 027501 |
|
|
Abstract Two-dimensional (2D) magnetic materials have been experimentally recognized recently, however, the Curie temperatures ($T_{\rm C}$) of known 2D systems are quite low. Generally, magnetic systems can be seen as constituent magnetic elements providing spins and the non-magnetic elements providing frameworks to host the magnetic elements. Short bond lengths between the magnetic and non-magnetic elements would be beneficial for strong magnetic interactions and thus high $T_{\rm C}$. Based on this, we propose to combine the magnetic element Cr and the non-magnetic element boron to design novel 2D magnetic systems. Using our self-developed software package IM$^{2}$ODE, we design a series of chromium-boride based 2D magnetic materials. Nine stable magnetic systems are identified. Among them, we find that CrB$_{4}$-I, CrB$_{4}$-II and CrB$_{5}$-I with common structural units [CrB$_{8}$] are ferromagnetic metals with estimated $T_{\rm C}$ of 270 K, 120 K and 110 K, respectively. On the other hand, five CrB$_{3}$ phases with structural units [Cr$_{2}$B$_{12}$] are antiferromagnetic metals. Additionally, we also find one antiferromagnetic semiconductor CrB$_{2}$-I. Our work may open new directions for identifying 2D magnetic systems with high $T_{\rm C}$.
|
|
Received: 01 December 2020
Published: 27 January 2021
|
|
|
Fund: Supported in part by the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the National Natural Science Foundation of China (Grant No. 61904035), the Fudan Start-up Funding (Grant No. JIH1512034), and the Shanghai Sailing Program (Grant No. 19YF1403100). |
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 |
[2] | Tao C, Jiao L, Yazyev O V, Chen Y, Feng J, Zhang X, Capaz R B, Tour J M, Zettl A and Louie S G 2011 Nat. Phys. 7 616 |
[3] | Ugeda M M, Brihuega I, Guinea F and Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 96804 |
[4] | Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Van Wees B J 2007 Nature 448 571 |
[5] | Sielemann R, Kobayashi Y, Yoshida Y, Gunnlaugsson H P and Weyer G 2008 Phys. Rev. Lett. 101 137206 |
[6] | Karpan V M, Giovannetti G, Khomyakov P A, Talanana M, Starikov A A, Zwierzycki M, Van Den Brink J, Brocks G and Kelly P J 2007 Phys. Rev. Lett. 99 176602 |
[7] | Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykkö P and Nieminen R M 2009 Phys. Rev. Lett. 102 126807 |
[8] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 |
[9] | Lee J, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C, Park J and Cheong H 2016 Nano Lett. 16 7433 |
[10] | S S M, Jouanne M, Balkanski M, Ouvrard G and Benedek G 1987 Phys. Rev. B 35 7097 |
[11] | Sun Y, Tan Q, Liu X, Gao Y and Zhang J 2019 J. Phys. Chem. Lett. 10 3087 |
[12] | Li X, Wu X and Yang J 2014 J. Am. Chem. Soc. 136 11065 |
[13] | Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5425 |
[14] | Ressouche E, Loire M, Simonet V, Ballou R, Stunault A and Wildes A 2010 Phys. Rev. B 82 100408 |
[15] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270 |
[16] | McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612 |
[17] | Wang J, Huang J, Wang Y, Yang T and Zhang Z 2019 Chin. Phys. B 28 77301 |
[18] | Guo Y, Liu N, Zhao Y, Jiang X, Zhou S and Zhao J 2020 Chin. Phys. Lett. 37 107506 |
[19] | Li X and Yang J 2014 J. Mater. Chem. C 2 7071 |
[20] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C and Wang Y 2017 Nature 546 265 |
[21] | Liao C, Jin Y, Zhang W, Zhu Z and Chen M 2020 Chin. Phys. Lett. 37 107505 |
[22] | Deiseroth H J, Aleksandrov K, Reiner C, Kienle L and Kremer R K 2006 Eur. J. Inorg. Chem. 2006 1561 |
[23] | Zhu J, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L and Wakeham N 2016 Phys. Rev. B 93 144404 |
[24] | May A F, Calder S, Cantoni C, Cao H and McGuire M A 2016 Phys. Rev. B 93 14411 |
[25] | Xu J, Wang S, Wang W, Zhou Y, Chen X, Yang Z and Qu Z 2020 Chin. Phys. Lett. 37 076202 |
[26] | Chen X, Lin Z Z and Cheng L R 2020 Chin. Phys. B 30 (in press) |
[27] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J 2018 Nature 563 94 |
[28] | Zhang Z, Yang Y, Gao G and Yakobson B I 2015 Angew. Chem. 127 13214 |
[29] | Zhang Z, Penev E S and Yakobson B I 2017 Chem. Soc. Rev. 46 6746 |
[30] | Zhang Z, Yang Y, Penev E S and Yakobson B I 2017 Adv. Funct. Mater. 27 1605059 |
[31] | Zhang Z, Mannix A J, Liu X, Hu Z, Guisinger N P, Hersam M C and Yakobson B I 2019 Sci. Adv. 5 eaax0246 |
[32] | Mannix A J, Zhang Z, Guisinger N P, Yakobson B I and Hersam M C 2018 Nat. Nanotechnol. 13 444 |
[33] | Liu L, Zhang Z, Liu X, Xuan X, Yakobson B I, Hersam M C and Guo W 2020 Nano Lett. 20 1315 |
[34] | Xie A, Wen T and Li J 2019 Chin. Phys. Lett. 36 117302 |
[35] | Mishra R K 1987 J. Appl. Phys. 62 967 |
[36] | Guo Y, Zhang Y, Yuan S, Wang B and Wang J 2018 Nanoscale 10 18036 |
[37] | Miao N, Xu B, Zhu L, Zhou J and Sun Z 2018 J. Am. Chem. Soc. 140 2417 |
[38] | Telford E J, Dismukes A H, Lee K, Cheng M, Wieteska A, Bartholomew A K, Chen Y, Xu X, Pasupathy A N, Zhu X, Dean C R and Roy X 2020 Adv. Mater. 32 2003240 |
[39] | Zhang Y, Gao W, Chen S, Xiang H and Gong X 2015 Comput. Mater. Sci. 98 51 |
[40] | Storn R and Price K 1997 J. Global Optim. 11 341 |
[41] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 |
[42] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[43] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[44] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[45] | Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467 |
[46] | Fennie C J, Rabe K M 2006 Phys. Rev. Lett. 96 205505 |
[47] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[48] | Zhou Y, Geng W and Wang D 1998 Phys. Rev. B 57 5029 |
[49] | Daalderop G, Kelly P J and Schuurmans M 1990 Phys. Rev. B 41 11919 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|