ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Uncooperative Effect of Hydrogen Bond on Water Dimer |
Danhui Li1, Zhiyuan Zhang1, Wanrun Jiang1, Yu Zhu1, Yi Gao2*, and Zhigang Wang1,3* |
1Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China 3Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China
|
|
Cite this article: |
Danhui Li, Zhiyuan Zhang, Wanrun Jiang et al 2021 Chin. Phys. Lett. 38 013101 |
|
|
Abstract The water dimer demonstrates a completely different protype in water systems, it prefers not forming larger clusters instead existing in vapor phase stably, which contracts the viewpoint of the cooperative effect of hydrogen bond (O–H$\cdots$O). It is well accepted that the cooperative effect is beneficial to forming more hydrogen bonds (O–H$\cdots$O), leading to stronger H-bond (H$\cdots$O) and increase in the O–H bond length with contraction of intermolecular distance. Herein, the high-precision ab initio methods of calculations applied on water dimer shows that the O–H bond length decreases and H-bond (H$\cdots$O) becomes weaker with decreasing H-bond length and O$\cdots$O distance, which can be considered as the uncooperative effect of hydrogen bond (O–H$\cdots$O). It is ascribed to the exchange repulsion of electrons, which results in decrease of the O–H bond length and prevents the decrease in the O$\cdots$O distance connected with the increasing scale of water clusters. Our findings highlight the uncooperative effect of hydrogen bond attributed to exchange repulsion of electrons as the mechanism for stabilizing water dimer in vapor phase, and open a new perspective for studies of hydrogen-bonded systems.
|
|
Received: 16 November 2020
Published: 16 December 2020
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974136 and 11674123). |
|
|
[1] | Kennedy D and Norman C 2005 Science 309 75 |
[2] | Kamb B, Narten A H and Levy H A 1970 Science 167 1520 |
[3] | Chaplin M F 2001 Biochem. Mol. Biol. Education 29 54 |
[4] | Derjaguin B and Churaev N 1971 Nat. Phys. Sci. 232 131 |
[5] | Chaplin M 2015 Water Structure and Science (Aptarimas: Vanduo) |
[6] | Ekwall P, Mandell L and Fontell K 1969 J. Colloid Interface Sci. 31 508 |
[7] | Chen M, Ko H Y and Remsing R C 2017 Proc. Natl. Acad. Sci. USA 114 10846 |
[8] | Dyke T R, Mack K M and Muenter J S 1977 J. Chem. Phys. 66 498 |
[9] | Pfeilsticker K 2003 Science 300 2078 |
[10] | Harries J E, Burroughs W J and Gebbie H A 1969 J. Quant. Spectrosc. Radiat. Transfer 9 799 |
[11] | Curtiss L A, Frurip D J and Blander M 1978 Chem. Phys. Lett. 54 575 |
[12] | Sciortino F and Fornili S L 1989 J. Chem. Phys. 90 2786 |
[13] | Guevara-Vela J M, Chávez-Calvillo R, García-Revilla M, Hernndez-Trujillo J, Christiansen O, Francisco E, Pendas A M and Rocha-Rinza T 2013 Chem. - Eur. J. 19 1 |
[14] | Stokely K M, Mazza M G, Stanley H E and Franzese G 2010 Proc. Natl. Acad. Sci. USA 107 1301 |
[15] | Mehring M, Markus S and Ludwig R 2003 Chem. - Eur. J. 9 837 |
[16] | Ludwig R 2001 Angew. Chem. Int. Ed. 40 1808 |
[17] | Yoon B J, Morokuma K and Davidson E R 1985 J. Chem. Phys. 83 1223 |
[18] | Frank H S and Wen W Y 1957 Discuss. Faraday Soc. 24 133 |
[19] | Saenger W 1979 Nature 279 343 |
[20] | Kar T and Scheiner S 2004 J. Phys. Chem. A 108 9161 |
[21] | Sun C and Sun Y 2016 The Attribute of Water: Single Notion, Multiple Myth, in Springer Ser. Chem. Phys. (Heidelberg: Springer-Verlag) vol 113 p 1 |
[22] | Masella M and Flament J P 1998 J. Chem. Phys. 108 7141 |
[23] | Argaman N 2000 Am. J. Phys. 68 69 |
[24] | Cook R L, De Lucia F C and Helminger P 1974 J. Mol. Spectrosc. 53 62 |
[25] | Fang Y, Xiao B and Tao J 2013 Phys. Rev. B 87 214101 |
[26] | Abascala J L F and Vega C 2005 J. Chem. Phys. 123 234505 |
[27] | Xantheas S S 2000 Chem. Phys. 258 225 |
[28] | Sun C, Zhang X and Zheng W 2012 Chem. Sci. 3 1455 |
[29] | Kowalski K and Piecuch P 2000 J. Chem. Phys. 113 18 |
[30] | Knizia G, Adler T B and Werner H J 2009 J. Chem. Phys. 130 054104 |
[31] | Geerlings P, Proft F D and Langenaeker W 2003 Chem. Rev. 103 1793 |
[32] | Elstner M, Porezag D, Seifert G, Frauenheim T and Suhai S 1998 MRS Proc. 538 541 |
[33] | Allinger N L 1976 Adv. Phys. Org. Chem. 13 1 |
[34] | Lane J R 2013 J. Chem. Theory Comput. 9 316 |
[35] | Klopper W, van Duijneveldt-van de Rijdt J G C M and van Duijneveldt F B 2000 Phys. Chem. Chem. Phys. 2 2227 |
[36] | Skinner H A 1945 Trans. Faraday Soc. 41 645 |
[37] | Kirchner B 2005 J. Chem. Phys. 123 204116 |
[38] | Afonin A V, Ushakov I A, Vashchenko A V, Kondarshov E V and Rulev A Y 2010 Magn. Reson. Chem. 48 661 |
[39] | Parthasarathi R, Subramanian V and Sathyamurthy N 2008 Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry 38 18 |
[40] | Pople J A, Bernstein H J and Schneider W G 1959 High-Resolution Nuclear Magnetic Resonance (New York: McGraw-Hill) |
[41] | Bickelhaupt F M and Baerends E J 2000 Reviews in computational chemistry 15 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|