Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 013401    DOI: 10.1088/0256-307X/38/1/013401
ATOMIC AND MOLECULAR PHYSICS |
Rabi Oscillations and Coherence Dynamics in Terahertz Streaking-Assisted Photoelectron Spectrum
Shuai Wang1,4, Zhiyuan Zhu1,2,4*, Yizhu Zhang3, Tian-Min Yan2*, and Yuhai Jiang1,2,5*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
3Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-electronics Information and Technical Science (Ministry of Education), Tianjin University, Tianjin 300072, China
4Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
5University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Shuai Wang, Zhiyuan Zhu, Yizhu Zhang et al  2021 Chin. Phys. Lett. 38 013401
Download: PDF(980KB)   PDF(mobile)(977KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an approach, a Terahertz streaking-assisted photoelectron spectrum (THz SAPS), to achieve direct observations of ultrafast coherence dynamics with timescales beyond the pulse duration. Using a 24 fs probe pulse, the THz SAPS enables us to well visualize Rabi oscillations of 11.76 fs and quantum beats of 2.62 fs between the ${5S_{1/2}}$ and ${5P_{3/2}}$ in rubidium atoms. The numerical results show that the THz SAPS can simultaneously achieve high resolution in both frequency and time domains without the limitation of Heisenberg uncertainty of the probe pulse. The long probe pulse promises sufficiently high frequency resolution in photoelectron spectroscopy allowing to observe Autler–Townes splittings, whereas the streaking THz field enhances temporal resolution for not only Rabi oscillations but also quantum beats between the ground and excited states. The THz SAPS demonstrates a potential applicability for observation and manipulation of ultrafast coherence processes in frequency and time domains.
Received: 13 September 2020      Published: 06 January 2021
PACS:  34.80.Pa (Coherence and correlation)  
  32.80.-t (Photoionization and excitation)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11827806, 11874368 and 61675213).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/013401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/013401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai Wang
Zhiyuan Zhu
Yizhu Zhang
Tian-Min Yan
and Yuhai Jiang
[1] Brinks D, Hildner R, Van Dijk E M, Stefani F D, Nieder J B, Hernando J and Van Hulst N F 2014 Chem. Soc. Rev. 43 2476
[2] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[3] Gallmann L, Cirelli C and Keller U 2012 Annu. Rev. Phys. Chem. 63 447
[4] Nisoli M, Decleva P, Calegari F, Palacios A and Martín F 2017 Chem. Rev. 117 10760
[5] Tamai N and Miyasaka H 2000 Chem. Rev. 100 1875
[6] Zewail A H 2000 J. Phys. Chem. A 104 5660
[7] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[8] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F and Leone S R 2010 Nature 466 739
[9] Senftleben A, Hemmer M, Schröter C D, Ullrich J, Pfeifer T and Moshammer R 2016 Science 354 308
[10] Rabi I I 1937 Phys. Rev. 51 652
[11] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[12] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[13] Saglamyurek E, Hrushevskyi T, Rastogi A, Heshami K and LeBlanc L J 2018 Nat. Photon. 12 774
[14] Girju M G, Hristov K, Kidun O and Bauer D 2007 J. Phys. B 40 4165
[15] Sun Z and Lou N 2003 Phys. Rev. Lett. 91 023002
[16] Fushitani M, Liu C N, Matsuda A, Endo T, Toida Y, Nagasono M, Togashi T, Yabashi M, Ishikawa T, Hikosaka Y and Morishita T 2016 Nat. Photon. 10 102
[17] Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F and Corkum P B 2002 Phys. Rev. Lett. 88 173903
[18] Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Science 305 1267
[19] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F and Wörner H J 2017 Opt. Express 25 27506
[20] Gagnon J and Yakovlev V S 2009 Opt. Express 17 17678
[21] P, Doumy G, Roedig C, Gagnon J, Messerschmidt M, Schorb S and Bostedt C 2014 Nat. Photon. 8 950
[22] Kowalewski M, Bennett K, Rouxel J R and Mukamel S 2016 Phys. Rev. Lett. 117 043201
[23] Lindenblatt H, Trost F, Liu Y, Stojanovic N, Al-Shemmary A, Golz T and Treusch R 2019 Phys. Rev. Lett. 122 073001
[24] Zhang Y, Yan T M and Jiang Y H 2018 Phys. Rev. Lett. 121 113201
[25] Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G and Lienau C 2013 Nat. Photon. 7 128
[26] Johnson T A, Urban E, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2008 Phys. Rev. Lett. 100 113003
[27] Li R, Yuan J, Wang X, Hou X, Zhang S, Zhu Z, Ma Y, Gao Q, Wang Z, Yan T M and Qin C 2019 J. Instrum. 14 P02022
[28] Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M and Jiang Y 2020 Chin. Phys. Lett. 37 053201
[29] Yuan J, Liu S, Wang X, Shen Z, Ma Y, Ma H, Meng Q, Yan T, Zhang Y, Dorn A, Weidemüller M, Ye D and Jiang Y 2020 Phys. Rev. A 102 043112
Viewed
Full text


Abstract