Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097402    DOI: 10.1088/0256-307X/37/9/097402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation
Kaiyao Zhou1,2, Jun Deng1,2, Liwei Guo1,2,3, and Jiangang Guo1,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Kaiyao Zhou, Jun Deng, Liwei Guo et al  2020 Chin. Phys. Lett. 37 097402
Download: PDF(1354KB)   PDF(mobile)(1340KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the newly-developed solid ionic gating technique, we measure the electrical transport property of a thin-flake NbSe$_{2}$ superconductor ($T_{\rm c} = 6.67$ K) under continuous Li intercalation and electron doping. It is found that the charge-density-wave transition is suppressed, while at the same time a carrier density, decreasing from $7\times 10^{14}$ cm$^{-2}$ to $2\times 10^{14}$ cm$^{-2}$ also occurs. This tunable capability in relation to carrier density is 70%, which is 5 times larger than that found using the liquid ionic gating method [Phys. Rev. Lett. 117 (2016) 106801]. Meanwhile, we find that the scattering type of conduction electrons transits to the $s$–$d$ process, which may be caused by the change of the occupied states of 4$d$-electrons in Nb under the condition of Li intercalation. Simultaneously, we observe a certain decrement of electron-phonon coupling (EPC), based on the electron-phonon scattering model, in the high temperature range. Based on data gathered from in situ measurements, we construct a full phase diagram of carrier density, EPC and $T_{\rm c}$ in the intercalated NbSe$_{2}$ sample, and qualitatively explain the variation of $T_{\rm c}$ within the BCS framework. It is our opinion that the in situ solid ionic gating method provides a direct route to describing the relationship between carrier density and superconductivity, which is helpful in promoting a clearer understanding of electronic phase competition in transition metal dichalcogenides.
Received: 28 June 2020      Published: 01 September 2020
PACS:  74.25.Dw (Superconductivity phase diagrams)  
  74.20.Fg (BCS theory and its development)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Supported by the MoST-Strategic International Cooperation in Science, Technology and Innovation Key Program (Grant No. 2018YFE0202601), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304700 and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 51922105 and 51772322), and the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH013).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/097402       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/097402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kaiyao Zhou
Jun Deng
Liwei Guo
and Jiangang Guo
[1] Zhang S et al. 2018 Chin. Phys. Lett. 35 097401
[2] Deng Y J et al. 2018 Nature 563 94
[3] Shimamura K et al. 2012 Appl. Phys. Lett. 100 122402
[4] Matsukura F, Tokura Y and Ohno H 2015 Nat. Nanotechnol. 10 209
[5] Klein D R et al. 2018 Science 360 1218
[6] Li L J et al. 2016 Nature 529 185
[7] Qin F et al. 2018 Nano Lett. 18 6789
[8] Nakagawa Y et al. 2018 Phys. Rev. B 98 064512
[9] Yuan H T et al. 2013 Nat. Phys. 9 563
[10] Shimizu S et al. 2013 Phys. Rev. Lett. 111 216803
[11] Zhang Y J, Ye J T, Matsuhashi Y and Iwasa Y 2012 Nano Lett. 12 1136
[12] Nakano M et al. 2012 Nature 487 459
[13] Cui Y et al. 2019 Chin. Phys. Lett. 36 077401
[14] Mao Y Y et al. 2018 Chin. Phys. Lett. 35 057402
[15] Zhang X et al. 2019 Chin. Phys. Lett. 36 057402
[16] Croft T P et al. 2014 Phys. Rev. B 89 224513
[17] Keimer B et al. 2015 Nature 518 179
[18] Ying T P et al. 2013 J. Am. Chem. Soc. 135 2951
[19] Ren Z A et al. 2008 Chin. Phys. Lett. 25 2215
[20] Sun R J et al. 2018 Phys. Rev. B 98 214508
[21] Fatemi V et al. 2018 Science 362 926
[22] Chen Z Y et al. 2018 Nat. Commun. 9 4008
[23] Ying T P et al. 2018 Phys. Rev. Lett. 121 207003
[24] Song Y P et al. 2019 Phys. Rev. Mater. 3 054804
[25] Ugeda M M et al. 2016 Nat. Phys. 12 92
[26] Wang H, Huang X, Lin J et al. 2017 Nat. Commun. 8 394
[27] Zehetmayer M and Weber H W 2010 Phys. Rev. B 82 014524
[28] Weber F et al. 2011 Phys. Rev. Lett. 107 107403
[29] Varma C M and Simons A L 1983 Phys. Rev. Lett. 51 138
[30] Straub Th et al. 1999 Phys. Rev. Lett. 82 4504
[31] Borisenko S V et al. 2009 Phys. Rev. Lett. 102 166402
[32] Kiss T et al. 2007 Nat. Phys. 3 720
[33] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[36] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[37] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[38] Frisenda R et al. 2018 Chem. Soc. Rev. 47 53
[39] Arguello C J et al. 2014 Phys. Rev. B 89 235115
[40] Edwards J and Frindt R F 1971 J. Phys. Chem. Solids 32 2217
[41] Zhang S S, Ye J W and Liu W M 2016 Phys. Rev. B 94 115121
[42] Xi X X et al. 2016 Phys. Rev. Lett. 117 106801
[43] Allison C Y, Finch C B, Foegelle M D and Modine F A 1988 Solid State Commun. 68 387
[44] Dordevic S V, Basov D N, Dynes R C and Bucher E 2001 Phys. Rev. B 64 161103
[45] McEwen C S, St D J, Edwards P P and Sienko M J 1985 Inorg. Chem. 24 1656
[46] Fan X et al. 2019 Inorg. Chem. 58 7564
Related articles from Frontiers Journals
[1] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 097402
[2] Xu Chen, Xinhui Zhan, Xiaojun Wang, Jun Deng, Xiao-Bing Liu, Xin Chen, Jian-Gang Guo, and Xiaolong Chen. Highly Robust Reentrant Superconductivity in CsV$_{3}$Sb$_{5}$ under Pressure[J]. Chin. Phys. Lett., 2021, 38(5): 097402
[3] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 097402
[4] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 097402
[5] Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu, Jian-Fa Zhao, Cheng Dong, Guang-Yang Dai, Xiao-Dong Li, He-Chang Lei, Run-Ze Yu, Guang-Ming Zhang, and Chang-Qing Jin. Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 097402
[6] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$[J]. Chin. Phys. Lett., 2020, 37(6): 097402
[7] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$ *[J]. Chin. Phys. Lett., 0, (): 097402
[8] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 097402
[9] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 097402
[10] Yiyuan Mao, Jun Li, Yulong Huan, Jie Yuan, Zi-an Li, Ke Chai, Mingwei Ma, Shunli Ni, Jinpeng Tian, Shaobo Liu, Huaxue Zhou, Fang Zhou, Jianqi Li, Guangming Zhang, Kui Jin, Xiaoli Dong, Zhongxian Zhao. Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System[J]. Chin. Phys. Lett., 2018, 35(5): 097402
[11] ZHOU Da-Wei, PU Chun-Ying, Szczęániak Dominik, ZHANG Guo-Fang, LU Cheng, LI Gen-Quan, SONG Jin-Fan. The Predicted fcc Superconducting Phase for Compressed Se and Te[J]. Chin. Phys. Lett., 2013, 30(2): 097402
[12] ZHAO Juan, FENG Wan-Xiang, LIU Zhi-Ming, MA Yan-Ming, HE Zhi, CUI Tian, ZOU Guang-Tian. Structural Investigation of Solid Methane at High Pressure[J]. Chin. Phys. Lett., 2010, 27(6): 097402
[13] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 097402
[14] LIU Zhi-Yong, YANG Hai-Peng, LU Xi-Feng, ZHOU Fang, WEN Hai-Hu. Low Temperature Specific Heat of the Underdoped La2-xSrxCuO4 Single Crystals[J]. Chin. Phys. Lett., 2004, 21(2): 097402
[15] SONG Bo, , WANG Yu-Peng. The Green Function Approach to the Two-Dimensional t-J model[J]. Chin. Phys. Lett., 2003, 20(2): 097402
Viewed
Full text


Abstract