CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation |
Kaiyao Zhou1,2, Jun Deng1,2, Liwei Guo1,2,3, and Jiangang Guo1,3* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Kaiyao Zhou, Jun Deng, Liwei Guo et al 2020 Chin. Phys. Lett. 37 097402 |
|
|
Abstract Using the newly-developed solid ionic gating technique, we measure the electrical transport property of a thin-flake NbSe$_{2}$ superconductor ($T_{\rm c} = 6.67$ K) under continuous Li intercalation and electron doping. It is found that the charge-density-wave transition is suppressed, while at the same time a carrier density, decreasing from $7\times 10^{14}$ cm$^{-2}$ to $2\times 10^{14}$ cm$^{-2}$ also occurs. This tunable capability in relation to carrier density is 70%, which is 5 times larger than that found using the liquid ionic gating method [Phys. Rev. Lett. 117 (2016) 106801]. Meanwhile, we find that the scattering type of conduction electrons transits to the $s$–$d$ process, which may be caused by the change of the occupied states of 4$d$-electrons in Nb under the condition of Li intercalation. Simultaneously, we observe a certain decrement of electron-phonon coupling (EPC), based on the electron-phonon scattering model, in the high temperature range. Based on data gathered from in situ measurements, we construct a full phase diagram of carrier density, EPC and $T_{\rm c}$ in the intercalated NbSe$_{2}$ sample, and qualitatively explain the variation of $T_{\rm c}$ within the BCS framework. It is our opinion that the in situ solid ionic gating method provides a direct route to describing the relationship between carrier density and superconductivity, which is helpful in promoting a clearer understanding of electronic phase competition in transition metal dichalcogenides.
|
|
Received: 28 June 2020
Published: 01 September 2020
|
|
PACS: |
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
74.20.Fg
|
(BCS theory and its development)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
|
Fund: Supported by the MoST-Strategic International Cooperation in Science, Technology and Innovation Key Program (Grant No. 2018YFE0202601), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304700 and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 51922105 and 51772322), and the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH013). |
|
|
[1] | Zhang S et al. 2018 Chin. Phys. Lett. 35 097401 |
[2] | Deng Y J et al. 2018 Nature 563 94 |
[3] | Shimamura K et al. 2012 Appl. Phys. Lett. 100 122402 |
[4] | Matsukura F, Tokura Y and Ohno H 2015 Nat. Nanotechnol. 10 209 |
[5] | Klein D R et al. 2018 Science 360 1218 |
[6] | Li L J et al. 2016 Nature 529 185 |
[7] | Qin F et al. 2018 Nano Lett. 18 6789 |
[8] | Nakagawa Y et al. 2018 Phys. Rev. B 98 064512 |
[9] | Yuan H T et al. 2013 Nat. Phys. 9 563 |
[10] | Shimizu S et al. 2013 Phys. Rev. Lett. 111 216803 |
[11] | Zhang Y J, Ye J T, Matsuhashi Y and Iwasa Y 2012 Nano Lett. 12 1136 |
[12] | Nakano M et al. 2012 Nature 487 459 |
[13] | Cui Y et al. 2019 Chin. Phys. Lett. 36 077401 |
[14] | Mao Y Y et al. 2018 Chin. Phys. Lett. 35 057402 |
[15] | Zhang X et al. 2019 Chin. Phys. Lett. 36 057402 |
[16] | Croft T P et al. 2014 Phys. Rev. B 89 224513 |
[17] | Keimer B et al. 2015 Nature 518 179 |
[18] | Ying T P et al. 2013 J. Am. Chem. Soc. 135 2951 |
[19] | Ren Z A et al. 2008 Chin. Phys. Lett. 25 2215 |
[20] | Sun R J et al. 2018 Phys. Rev. B 98 214508 |
[21] | Fatemi V et al. 2018 Science 362 926 |
[22] | Chen Z Y et al. 2018 Nat. Commun. 9 4008 |
[23] | Ying T P et al. 2018 Phys. Rev. Lett. 121 207003 |
[24] | Song Y P et al. 2019 Phys. Rev. Mater. 3 054804 |
[25] | Ugeda M M et al. 2016 Nat. Phys. 12 92 |
[26] | Wang H, Huang X, Lin J et al. 2017 Nat. Commun. 8 394 |
[27] | Zehetmayer M and Weber H W 2010 Phys. Rev. B 82 014524 |
[28] | Weber F et al. 2011 Phys. Rev. Lett. 107 107403 |
[29] | Varma C M and Simons A L 1983 Phys. Rev. Lett. 51 138 |
[30] | Straub Th et al. 1999 Phys. Rev. Lett. 82 4504 |
[31] | Borisenko S V et al. 2009 Phys. Rev. Lett. 102 166402 |
[32] | Kiss T et al. 2007 Nat. Phys. 3 720 |
[33] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[34] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[35] | Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396 |
[36] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[37] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[38] | Frisenda R et al. 2018 Chem. Soc. Rev. 47 53 |
[39] | Arguello C J et al. 2014 Phys. Rev. B 89 235115 |
[40] | Edwards J and Frindt R F 1971 J. Phys. Chem. Solids 32 2217 |
[41] | Zhang S S, Ye J W and Liu W M 2016 Phys. Rev. B 94 115121 |
[42] | Xi X X et al. 2016 Phys. Rev. Lett. 117 106801 |
[43] | Allison C Y, Finch C B, Foegelle M D and Modine F A 1988 Solid State Commun. 68 387 |
[44] | Dordevic S V, Basov D N, Dynes R C and Bucher E 2001 Phys. Rev. B 64 161103 |
[45] | McEwen C S, St D J, Edwards P P and Sienko M J 1985 Inorg. Chem. 24 1656 |
[46] | Fan X et al. 2019 Inorg. Chem. 58 7564 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|