FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect |
Zhong Wang1†, Zhiyang Yuan1‡, and Feng Liu1,2* |
1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China 2Center for Quantitative Biology, Peking University, Beijing 100871, China
|
|
Cite this article: |
Zhong Wang, Zhiyang Yuan, and Feng Liu 2020 Chin. Phys. Lett. 37 094701 |
|
|
Abstract Novel ionic transporting phenomena emerge as nanostructures approach the molecular scale. At the sub-2 nm scale, widely used continuum equations, such as the Nernst–Planck equation, break down. Here, we extend the Nernst–Planck equation by adding a partial dehydration effect. Our model agrees with the reported ion fluxes through graphene oxide laminates with sub-2 nm interlayer spacing, outperforming previous models. We also predict that the selectivity sequences of alkali metal ions depend on the geometries of the nanostructures. Our model opens a new avenue for the investigation of the underlying mechanisms in nanofluidics at the sub-2 nm scale.
|
|
Received: 30 April 2020
Published: 01 September 2020
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11875076). |
|
|
[1] | Kratochvil H T, Carr J K, Matulef K et al. 2016 Science 353 1040 |
[2] | Liu S and Gonen T 2018 Commun. Biol. 1 38 |
[3] | Nair R R, Wu H A, Jayaram P et al. 2012 Science 335 442 |
[4] | Joshi R K, Carbone P, Wang F C et al. 2014 Science 343 752 |
[5] | Jain T, Rasera B C, Guerrero R J S et al. 2015 Nat. Nanotechnol. 10 1053 |
[6] | Radha B, Esfandiar A, Wang F C et al. 2016 Nature 538 222 |
[7] | Wen Q, Yan D X, Liu F et al. 2016 Adv. Funct. Mater. 26 5796 |
[8] | Abraham J, Vasu K S, Williams C D et al. 2017 Nat. Nanotechnol. 12 546 |
[9] | Esfandiar A, Radha B, Wang F C et al. 2017 Science 358 511 |
[10] | Wang P F, Wang M, Liu F et al. 2018 Nat. Commun. 9 569 |
[11] | Zhang H C, Hou J, Hu Y X et al. 2018 Sci. Adv. 4 eaaq0066 |
[12] | Wang P F, Wang X, Ling Y et al. 2018 Radiat. Meas. 119 80 |
[13] | Feng Y X, Zhang Y C, Ying C F et al. 2015 Genomics Proteomics & Bioinf. 13 4 |
[14] | Wang L D, Boutilier M S H, Kidambi P R et al. 2017 Nat. Nanotechnol. 12 509 |
[15] | Wei N, Peng X S and Xu Z P 2014 ACS Appl. Mater. & Interfaces 6 5877 |
[16] | Sahu S, Di Ventra M and Zwolak M 2017 Nano Lett. 17 4719 |
[17] | Wang M, Shen W H, Ding S Y et al. 2018 Nanoscale 10 18821 |
[18] | Moy G, Corry B, Kuyucak S et al. 2000 Biophys. J. 78 2349 |
[19] | Corry B, Kuyucak S and Chung S H 2000 Biophys. J. 78 2364 |
[20] | Song C and Corry B 2011 PLOS ONE 6 e21204 |
[21] | Chen P R, Xu Z C, Gu Y et al. 2016 Chin. Phys. B 25 086601 |
[22] | Gao Y, Huang J, Liu Y W et al. 2019 Curr. Opin. Electrochem. 13 107 |
[23] | Suk M E and Aluru N R 2014 J. Chem. Phys. 140 084707 |
[24] | Mouterde T, Keerthi A, Poggioli A R et al. 2019 Nature 567 87 |
[25] | Qiao Y and Lu B Z 2016 Chin. Phys. B 25 018705 |
[26] | Gillespie D, Xu L and Meissner G 2014 Biophys. J. 107 2263 |
[27] | Laio A and Torre V 1999 Biophys. J. 76 129 |
[28] | Zwolak M, Lagerqvist J and Di Ventra M 2009 Phys. Rev. Lett. 103 128102 |
[29] | Zwolak M, Wilson J and Di Ventra M 2010 J. Phys.: Condens. Matter 22 454126 |
[30] | Schlaich A, Knapp E W and Netz R R 2016 Phys. Rev. Lett. 117 048001 |
[31] | Fumagalli L, Esfandiar A, Fabregas R et al. 2018 Science 360 1339 |
[32] | Amiri H, Shepard K L, Nuckolls C et al. 2017 Nano Lett. 17 1204 |
[33] | Baimpos T, Shrestha B R, Raman S et al. 2014 Langmuir 30 4322 |
[34] | Eisenman G 1962 Biophys. J. 2 259 |
[35] | Krauss D, Eisenberg B and Gillespie D 2011 Eur. Biophys. J. 40 775 |
[36] | Wu J 1991 Biophys. J. 60 238 |
[37] | Luchinsky D G, Tindjong R, Kaufman I et al. 2009 Phys. Rev. E 80 021925 |
[38] | Ohtaki H and Radnai T 1993 Chem. Rev. 93 1157 |
[39] | Marcus Y 1991 J. Chem. Soc., Faraday Trans. 87 2995 |
[40] | Saxena A and García A E 2015 J. Phys. Chem. B 119 219 |
[41] | Yoo J, Wilson J and Aksimentiev A 2016 Biopolymers 105 752 |
[42] | Hong S, Constans C, Surmani Martins M V et al. 2017 Nano Lett. 17 728 |
[43] | Zhang Z K, Shen W H, Lin L X et al. 2020 Adv. Sci. 7 2000286 |
[44] | Xu W L, Fang C, Zhou F L et al. 2017 Nano Lett. 17 2928 |
[45] | Ren C E, Hatzell K B, Alhabeb M et al. 2015 J. Phys. Chem. Lett. 6 4026 |
[46] | Feng J D, Liu K, Graf M et al. 2016 Nat. Mater. 15 850 |
[47] | Guo Y, Ying Y L, Mao Y Y et al. 2016 Ngewandte Chem.-Int. Ed. 55 15120 |
[48] | Surwade S P, Smirnov S N, Vlassiouk I V et al. 2015 Nat. Nanotechnol. 10 459 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|