PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Verification of Energetic-Particle-Induced Geodesic Acoustic Mode in Gyrokinetic Particle Simulations |
Yang Chen1,2,3, Wenlu Zhang2,4,3,1,5*, Jian Bao2,3, Zhihong Lin6, Chao Dong2,3, Jintao Cao2,3, and Ding Li2,4,3,5 |
1School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China 2Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4Songshan Lake Materials Laboratory, Dongguan 523808, China 5CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China 6Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
|
|
Cite this article: |
Yang Chen, Wenlu Zhang, Jian Bao et al 2020 Chin. Phys. Lett. 37 095201 |
|
|
Abstract The energetic-particle-induced geodesic acoustic mode (EGAM) is studied using gyrokinetic particle simulations in tokamak plasmas. In our simulations, exponentially growing EGAMs are excited by energetic particles with a slowing-down distribution. The frequencies of EGAMs are always below the frequencies of GAMs, which is due to the non-perturbative contribution of energetic particles (EPs). The mode structures of EGAMs are similar to the corresponding mode structures of GAMs. Our gyrokinetic simulations show that a high EP density can enhance the EGAM growth rate, due to high EP free energy, and that EPs' temperature and the pitch angle of the distribution modify the EGAM frequency/growth rate by means of the resonance condition. Kinetic effects of the thermal electrons barely change the EGAM frequency, and have a weak damping effect on the EGAM. Benchmarks between the gyrokinetic particle simulations and a local EGAM dispersion relation exhibit good agreement in terms of EGAM frequency and growth rate.
|
|
Received: 27 May 2020
Published: 01 September 2020
|
|
PACS: |
52.35.Bj
|
(Magnetohydrodynamic waves (e.g., Alfven waves))
|
|
52.40.Mj
|
(Particle beam interactions in plasmas)
|
|
52.30.-q
|
(Plasma dynamics and flow)
|
|
|
Fund: Supported by the National MCF Energy R&D Program (Grant Nos. 2018YFE0304100, 2018YFE0311300 and 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos. 11675256, 11675257, 11835016, 11875067 and 11705275), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16010300), the Key Research Program of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS016), and the External Cooperation Program of the Chinese Academy of Sciences (Grant No. 112111KYSB20160039). |
|
|
[1] | Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448 |
[2] | Hasegawa A, Maclennan C G and Kodama Y 1979 Phys. Fluids 22 2122 |
[3] | Lin Z, Hahm T S, Lee W W, Tang W M and White R B 1998 Science 281 1835 |
[4] | Wang G, Ma J, Weiland J and Zagorodny A G 2015 Chin. Phys. Lett. 32 115201 |
[5] | Hamada Y, Nishizawa A, Ido T, Watari T, Kojima M, Kawasumi Y, Narihara K, Toi K and Group J I 2005 Nucl. Fusion 45 81 |
[6] | Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J P, Cheng J, Yu D L et al. 2008 Phys. Plasmas 15 056105 |
[7] | Hasegawa A and Wakatani M 1987 Phys. Rev. Lett. 59 1581 |
[8] | Gao Z 2013 Phys. Plasmas 20 032501 |
[9] | Chakrabarti N, Singh R, Kaw P K and Guzdar P N 2007 Phys. Plasmas 14 052308 |
[10] | Zhang H S and Lin Z 2010 Phys. Plasmas 17 072502 |
[11] | Xu X Q, Xiong Z, Gao Z, Nevins W M and Mckee G R 2008 Phys. Rev. Lett. 100 215001 |
[12] | Zarzoso D, Garbet X, Sarazin Y, Dumont R and Grandgirard V 2012 Phys. Plasmas 19 022102 |
[13] | Wang H, Todo Y and Kim C C 2013 Phys. Rev. Lett. 110 155006 |
[14] | Dorf M, Cohen R H, Dorr M R, Rognlien T D, Hittinger J A, Compton J C, Colella P, Martin D F and Mccorquodale P 2013 Nucl. Fusion 53 063015 |
[15] | Zhang H, Qiu Z, Chen L and Lin Z 2009 Nucl. Fusion 49 125009 |
[16] | Zhiyong Q, Zonca F and Liu C 2011 Plasma Sci. Technol. 13 257 |
[17] | Cao J, Qiu Z and Zonca F 2015 Phys. Plasmas 22 124505 |
[18] | Guo W F, Wang S J and Li J G 2009 Chin. Phys. Lett. 26 045202 |
[19] | Lebedev V B, Yushmanov P N, Diamond P H, Novakovskii S V and Smolyakov A I 1996 Phys. Plasmas 3 3023 |
[20] | Novakovskii S V, Liu C S, Sagdeev R Z and Rosenbluth M N 1997 Phys. Plasmas 4 4272 |
[21] | Qiu Z, Chen L and Zonca F 2009 Plasma Phys. Control. Fusion 51 012001 |
[22] | Bingren S, Jiquan L I and Jiaqi D 2005 Chin. Phys. Lett. 22 1179 |
[23] | Hinton F L and Rosenbluth M N 1999 Plasma Phys. Control. Fusion 41 A653 |
[24] | Liu F, Lin Z, Dong J Q and Zhao K J 2010 Phys. Plasmas 17 112318 |
[25] | Fu G Y 2008 Phys. Rev. Lett. 101 185002 |
[26] | Nazikian R, Fu G Y, Austin M E, Berk H L, Budny R V, Gorelenkov N N, Heidbrink W W, Holcomb C T, Kramer G J et al. 2008 Phys. Rev. Lett. 101 185001 |
[27] | Ido T, Shimizu A, Nishiura M, Nakamura S, Kato S, Nakano H, Yoshimura Y, Toi K et al. 2011 Nucl. Fusion 51 073046 |
[28] | Boswell C, Berk H L, Borba D, Johnson T, Pinches S D and Sharapov S E 2006 Phys. Lett. A 358 154 |
[29] | Berk H L, Boswell C, Borba D, Figueiredo A C A, Johnson T, Nave M F F, Pinches S D, Sharapov S E and Contributors J E 2006 Nucl. Fusion 46 S888 |
[30] | Horvath L, Papp G, Pokol G I, Lauber P, Gabor P, Gude A and Igochine V 2016 Nucl. Fusion 56 112003 |
[31] | Chen W, Ding X T, Yu L M, Ji X Q, Shi Z B, Zhang Y P, Zhong W L, Yuan G L, Dong J Q et al. 2013 Nucl. Fusion 53 113010 |
[32] | Xu M, Zhang J, Zhou T, Duan Y M, Hu L, Li Y, Xu L, Shi T H, Liu Y et al. 2018 Nucl. Fusion 58 096004 |
[33] | Berk H L and Zhou T 2010 Nucl. Fusion 50 035007 |
[34] | Qiu Z, Zonca F and Chen L 2010 Plasma Phys. Control. Fusion 52 095003 |
[35] | Fu G Y 2011 J. Plasma Phys. 77 457 |
[36] | Sasaki M, Itoh K and Itoh S 2011 Plasma Phys. Control. Fusion 53 085017 |
[37] | Kolesnichenko Y I, Lepiavko B S and Lutsenko V V 2013 Plasma Phys. Control. Fusion 55 125007 |
[38] | Ren H and Wang H 2018 Nucl. Fusion 58 046005 |
[39] | Wang H and Todo Y 2013 Phys. Plasmas 20 012506 |
[40] | Wang H, Todo Y, Ido T and Osakabe M 2015 Phys. Plasmas 22 092507 |
[41] | Wang H, Todo Y, Oasakabe M, Ido T and Suzuki Y 2019 Nucl. Fusion 59 096041 |
[42] | Zarzoso D, Sarazin Y, Garbet X, Dumont R, Strugarek A, Abiteboul J, Cartiermichaud T, Dif-Pradalier G, Ghendrih P, Grandgirard V et al. 2013 Phys. Rev. Lett. 110 125002 |
[43] | Hu W, Feng H and Dong C 2018 Chin. Phys. Lett. 35 105201 |
[44] | Hu W, Feng H and Zhang W 2019 Chin. Phys. Lett. 36 085201 |
[45] | Zhang W, Holod I, Lin Z and Xiao Y 2012 Phys. Plasmas 19 022507 |
[46] | Wang Z, Lin Z, Holod I, Heidbrink W W, Tobias B, Zeeland M V and Austin M E 2013 Phys. Rev. Lett. 111 145003 |
[47] | Chen Y, Zhang W, Cheng J, Lin Z, Dong C and Li D 2019 Phys. Plasmas 26 102507 |
[48] | Cheng J, Zhang W, Lin Z, Ding L, Chao D and Cao J 2017 Phys. Plasmas 24 092516 |
[49] | Holod I, Zhang W L, Xiao Y and Lin Z 2009 Phys. Plasmas 16 122307 |
[50] | Lin Z and Chen L 2001 Phys. Plasmas 8 1447 |
[51] | Lin Z, Nishimura Y, Xiao Y, Holod I, Zhang W and Chen L 2007 Plasma Phys. Control. Fusion 49 B163 |
[52] | Xiao Y, Holod I, Wang Z, Lin Z and Zhang T 2015 Phys. Plasmas 22 022516 |
[53] | Gaffey J D 1976 J. Plasma Phys. 16 149 |
[54] | Estradamila C, Candy J and Waltz R E 2006 Phys. Plasmas 13 112303 |
[55] | Chen L 1999 J. Geophys. Res. 104 2421 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|